const ( LEAF_HEIGHT = 1 ZERO_HEIGHT = 0 NOT_KEY32 = int32(-0x80000000) )
type Iterator struct {
// contains filtered or unexported fields
}
func (it *Iterator) Done() bool
func (it *Iterator) Next() (int32, interface{})
T is the exported applicative balanced tree data type. A T can be used as a value; updates to one copy of the value do not change other copies.
type T struct {
// contains filtered or unexported fields
}
func (t *T) Copy() *T
func (t *T) Delete(x int32) interface{}
func (t *T) DeleteMax() (int32, interface{})
func (t *T) DeleteMin() (int32, interface{})
func (t *T) Difference(u *T, f func(x, y interface{}) interface{}) *T
Difference returns the difference of t and u, subject to the result of f applied to data corresponding to equal keys. If f returns nil (or if f is nil) then the key+data are excluded, as usual. If f returns not-nil, then that key+data pair is inserted. instead.
func (t *T) Equals(u *T) bool
func (t *T) Equiv(u *T, eqv func(x, y interface{}) bool) bool
func (t *T) Find(x int32) interface{}
Find returns the data associated with x in the tree, or nil if x is not in the tree.
func (t *T) Glb(x int32) (k int32, d interface{})
Glb returns the greatest-lower-bound-exclusive of x and the associated data. If x has no glb in the tree, then (NOT_KEY32, nil) is returned.
func (t *T) GlbEq(x int32) (k int32, d interface{})
GlbEq returns the greatest-lower-bound-inclusive of x and the associated data. If x has no glbEQ in the tree, then (NOT_KEY32, nil) is returned.
func (t *T) Insert(x int32, data interface{}) interface{}
Insert either adds x to the tree if x was not previously a key in the tree, or updates the data for x in the tree if x was already a key in the tree. The previous data associated with x is returned, and is nil if x was not previously a key in the tree.
func (t *T) Intersection(u *T, f func(x, y interface{}) interface{}) *T
Intersection returns the intersection of t and u, where the result data for any common keys is given by f(t's data, u's data) -- f need not be symmetric. If f returns nil, then the key and data are not added to the result. If f itself is nil, then whatever value was already present in the smaller set is used.
func (t *T) IsEmpty() bool
IsEmpty returns true iff t is empty.
func (t *T) IsSingle() bool
IsSingle returns true iff t is a singleton (leaf).
func (t *T) Iterator() Iterator
func (t *T) Lub(x int32) (k int32, d interface{})
Lub returns the least-upper-bound-exclusive of x and the associated data. If x has no lub in the tree, then (NOT_KEY32, nil) is returned.
func (t *T) LubEq(x int32) (k int32, d interface{})
LubEq returns the least-upper-bound-inclusive of x and the associated data. If x has no lubEq in the tree, then (NOT_KEY32, nil) is returned.
func (t *T) Max() (k int32, d interface{})
Max returns the maximum element of t. If t is empty, then (NOT_KEY32, nil) is returned.
func (t *T) Min() (k int32, d interface{})
Min returns the minimum element of t. If t is empty, then (NOT_KEY32, nil) is returned.
func (t *T) Size() int
func (t *T) String() string
func (t *T) Union(u *T, f func(x, y interface{}) interface{}) *T
Union returns the union of t and u, where the result data for any common keys is given by f(t's data, u's data) -- f need not be symmetric. If f returns nil, then the key and data are not added to the result. If f itself is nil, then whatever value was already present in the larger set is used.
func (t *T) VisitInOrder(f func(int32, interface{}))
VisitInOrder applies f to the key and data pairs in t, with keys ordered from smallest to largest.