const ( EscUnknown = iota EscNone // Does not escape to heap, result, or parameters. EscHeap // Reachable from the heap EscNever // By construction will not escape. )
const ( // Maximum size in bits for big.Ints before signaling // overflow and also mantissa precision for big.Floats. ConstPrec = 512 )
var ( // MaxStackVarSize is the maximum size variable which we will allocate on the stack. // This limit is for explicit variable declarations like "var x T" or "x := ...". // Note: the flag smallframes can update this value. MaxStackVarSize = int64(10 * 1024 * 1024) // MaxImplicitStackVarSize is the maximum size of implicit variables that we will allocate on the stack. // p := new(T) allocating T on the stack // p := &T{} allocating T on the stack // s := make([]T, n) allocating [n]T on the stack // s := []byte("...") allocating [n]byte on the stack // Note: the flag smallframes can update this value. MaxImplicitStackVarSize = int64(64 * 1024) // MaxSmallArraySize is the maximum size of an array which is considered small. // Small arrays will be initialized directly with a sequence of constant stores. // Large arrays will be initialized by copying from a static temp. // 256 bytes was chosen to minimize generated code + statictmp size. MaxSmallArraySize = int64(256) )
EscFmt is set by the escape analysis code to add escape analysis details to the node print.
var EscFmt func(n Node) string
IsIntrinsicCall reports whether the compiler back end will treat the call as an intrinsic operation.
var IsIntrinsicCall = func(*CallExpr) bool { return false }
var OKForConst [types.NTYPE]bool
var OpNames = []string{ OADDR: "&", OADD: "+", OADDSTR: "+", OANDAND: "&&", OANDNOT: "&^", OAND: "&", OAPPEND: "append", OAS: "=", OAS2: "=", OBREAK: "break", OCALL: "function call", OCAP: "cap", OCASE: "case", OCLEAR: "clear", OCLOSE: "close", OCOMPLEX: "complex", OBITNOT: "^", OCONTINUE: "continue", OCOPY: "copy", ODELETE: "delete", ODEFER: "defer", ODIV: "/", OEQ: "==", OFALL: "fallthrough", OFOR: "for", OGE: ">=", OGOTO: "goto", OGT: ">", OIF: "if", OIMAG: "imag", OINLMARK: "inlmark", ODEREF: "*", OLEN: "len", OLE: "<=", OLSH: "<<", OLT: "<", OMAKE: "make", ONEG: "-", OMAX: "max", OMIN: "min", OMOD: "%", OMUL: "*", ONEW: "new", ONE: "!=", ONOT: "!", OOROR: "||", OOR: "|", OPANIC: "panic", OPLUS: "+", OPRINTLN: "println", OPRINT: "print", ORANGE: "range", OREAL: "real", ORECV: "<-", ORECOVER: "recover", ORETURN: "return", ORSH: ">>", OSELECT: "select", OSEND: "<-", OSUB: "-", OSWITCH: "switch", OUNSAFEADD: "unsafe.Add", OUNSAFESLICE: "unsafe.Slice", OUNSAFESLICEDATA: "unsafe.SliceData", OUNSAFESTRING: "unsafe.String", OUNSAFESTRINGDATA: "unsafe.StringData", OXOR: "^", }
var OpPrec = []int{ OAPPEND: 8, OBYTES2STR: 8, OARRAYLIT: 8, OSLICELIT: 8, ORUNES2STR: 8, OCALLFUNC: 8, OCALLINTER: 8, OCALLMETH: 8, OCALL: 8, OCAP: 8, OCLEAR: 8, OCLOSE: 8, OCOMPLIT: 8, OCONVIFACE: 8, OCONVNOP: 8, OCONV: 8, OCOPY: 8, ODELETE: 8, OGETG: 8, OLEN: 8, OLITERAL: 8, OMAKESLICE: 8, OMAKESLICECOPY: 8, OMAKE: 8, OMAPLIT: 8, OMAX: 8, OMIN: 8, ONAME: 8, ONEW: 8, ONIL: 8, ONONAME: 8, OPANIC: 8, OPAREN: 8, OPRINTLN: 8, OPRINT: 8, ORUNESTR: 8, OSLICE2ARR: 8, OSLICE2ARRPTR: 8, OSTR2BYTES: 8, OSTR2RUNES: 8, OSTRUCTLIT: 8, OTYPE: 8, OUNSAFEADD: 8, OUNSAFESLICE: 8, OUNSAFESLICEDATA: 8, OUNSAFESTRING: 8, OUNSAFESTRINGDATA: 8, OINDEXMAP: 8, OINDEX: 8, OSLICE: 8, OSLICESTR: 8, OSLICEARR: 8, OSLICE3: 8, OSLICE3ARR: 8, OSLICEHEADER: 8, OSTRINGHEADER: 8, ODOTINTER: 8, ODOTMETH: 8, ODOTPTR: 8, ODOTTYPE2: 8, ODOTTYPE: 8, ODOT: 8, OXDOT: 8, OMETHVALUE: 8, OMETHEXPR: 8, OPLUS: 7, ONOT: 7, OBITNOT: 7, ONEG: 7, OADDR: 7, ODEREF: 7, ORECV: 7, OMUL: 6, ODIV: 6, OMOD: 6, OLSH: 6, ORSH: 6, OAND: 6, OANDNOT: 6, OADD: 5, OSUB: 5, OOR: 5, OXOR: 5, OEQ: 4, OLT: 4, OLE: 4, OGE: 4, OGT: 4, ONE: 4, OSEND: 3, OANDAND: 2, OOROR: 1, OAS: -1, OAS2: -1, OAS2DOTTYPE: -1, OAS2FUNC: -1, OAS2MAPR: -1, OAS2RECV: -1, OASOP: -1, OBLOCK: -1, OBREAK: -1, OCASE: -1, OCONTINUE: -1, ODCL: -1, ODEFER: -1, OFALL: -1, OFOR: -1, OGOTO: -1, OIF: -1, OLABEL: -1, OGO: -1, ORANGE: -1, ORETURN: -1, OSELECT: -1, OSWITCH: -1, OEND: 0, }
Pkgs holds known packages.
var Pkgs struct { Go *types.Pkg Itab *types.Pkg Runtime *types.Pkg Coverage *types.Pkg }
Syms holds known symbols.
var Syms symsStruct
func Any(n Node, cond func(Node) bool) bool
Any looks for a non-nil node x in the IR tree rooted at n for which cond(x) returns true. Any considers nodes in a depth-first, preorder traversal. When Any finds a node x such that cond(x) is true, Any ends the traversal and returns true immediately. Otherwise Any returns false after completing the entire traversal.
func AnyList(list Nodes, cond func(Node) bool) bool
AnyList calls Any(x, cond) for each node x in the list, in order. If any call returns true, AnyList stops and returns true. Otherwise, AnyList returns false after calling Any(x, cond) for every x in the list.
func AssertValidTypeForConst(t *types.Type, v constant.Value)
func BigFloat(v constant.Value) *big.Float
func BoolVal(n Node) bool
BoolVal returns n as a bool. n must be a boolean constant.
func ClosureDebugRuntimeCheck(clo *ClosureExpr)
ClosureDebugRuntimeCheck applies boilerplate checks for debug flags and compiling runtime.
func ConstOverflow(v constant.Value, t *types.Type) bool
ConstOverflow reports whether constant value v is too large to represent with type t.
func ConstType(n Node) constant.Kind
func DeclaredBy(x, stmt Node) bool
DeclaredBy reports whether expression x refers (directly) to a variable that was declared by the given statement.
func DoChildren(n Node, do func(Node) bool) bool
DoChildren calls do(x) on each of n's non-nil child nodes x. If any call returns true, DoChildren stops and returns true. Otherwise, DoChildren returns false.
Note that DoChildren(n, do) only calls do(x) for n's immediate children. If x's children should be processed, then do(x) must call DoChildren(x, do).
DoChildren allows constructing general traversals of the IR graph that can stop early if needed. The most general usage is:
var do func(ir.Node) bool do = func(x ir.Node) bool { ... processing BEFORE visiting children ... if ... should visit children ... { ir.DoChildren(x, do) ... processing AFTER visiting children ... } if ... should stop parent DoChildren call from visiting siblings ... { return true } return false } do(root)
Since DoChildren does not return true itself, if the do function never wants to stop the traversal, it can assume that DoChildren itself will always return false, simplifying to:
var do func(ir.Node) bool do = func(x ir.Node) bool { ... processing BEFORE visiting children ... if ... should visit children ... { ir.DoChildren(x, do) } ... processing AFTER visiting children ... return false } do(root)
The Visit function illustrates a further simplification of the pattern, only processing before visiting children and never stopping:
func Visit(n ir.Node, visit func(ir.Node)) { if n == nil { return } var do func(ir.Node) bool do = func(x ir.Node) bool { visit(x) return ir.DoChildren(x, do) } do(n) }
The Any function illustrates a different simplification of the pattern, visiting each node and then its children, recursively, until finding a node x for which cond(x) returns true, at which point the entire traversal stops and returns true.
func Any(n ir.Node, cond(ir.Node) bool) bool { if n == nil { return false } var do func(ir.Node) bool do = func(x ir.Node) bool { return cond(x) || ir.DoChildren(x, do) } return do(n) }
Visit and Any are presented above as examples of how to use DoChildren effectively, but of course, usage that fits within the simplifications captured by Visit or Any will be best served by directly calling the ones provided by this package.
func Dump(s string, n Node)
Dump prints the message s followed by a debug dump of n.
func DumpAny(root interface{}, filter string, depth int)
DumpAny is like FDumpAny but prints to stderr.
func DumpList(s string, list Nodes)
DumpList prints the message s followed by a debug dump of each node in the list.
func EditChildren(n Node, edit func(Node) Node)
EditChildren edits the child nodes of n, replacing each child x with edit(x).
Note that EditChildren(n, edit) only calls edit(x) for n's immediate children. If x's children should be processed, then edit(x) must call EditChildren(x, edit).
EditChildren allows constructing general editing passes of the IR graph. The most general usage is:
var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { ... processing BEFORE editing children ... if ... should edit children ... { EditChildren(x, edit) ... processing AFTER editing children ... } ... return x ... } n = edit(n)
EditChildren edits the node in place. To edit a copy, call Copy first. As an example, a simple deep copy implementation would be:
func deepCopy(n ir.Node) ir.Node { var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { x = ir.Copy(x) ir.EditChildren(x, edit) return x } return edit(n) }
Of course, in this case it is better to call ir.DeepCopy than to build one anew.
func EditChildrenWithHidden(n Node, edit func(Node) Node)
EditChildrenWithHidden is like EditChildren, but also edits Node-typed fields tagged with `mknode:"-"`.
TODO(mdempsky): Remove the `mknode:"-"` tags so this function can go away.
func FDumpAny(w io.Writer, root interface{}, filter string, depth int)
FDumpAny prints the structure of a rooted data structure to w by depth-first traversal of the data structure.
The filter parameter is a regular expression. If it is non-empty, only struct fields whose names match filter are printed.
The depth parameter controls how deep traversal recurses before it returns (higher value means greater depth). If an empty field filter is given, a good depth default value is 4. A negative depth means no depth limit, which may be fine for small data structures or if there is a non-empty filter.
In the output, Node structs are identified by their Op name rather than their type; struct fields with zero values or non-matching field names are omitted, and "…" means recursion depth has been reached or struct fields have been omitted.
func FDumpList(w io.Writer, s string, list Nodes)
FDumpList prints to w the message s followed by a debug dump of each node in the list.
func FuncName(f *Func) string
FuncName returns the name (without the package) of the function f.
func FuncSymName(s *types.Sym) string
func HasUniquePos(n Node) bool
HasUniquePos reports whether n has a unique position that can be used for reporting error messages.
It's primarily used to distinguish references to named objects, whose Pos will point back to their declaration position rather than their usage position.
func InitLSym(f *Func, hasBody bool)
InitLSym defines f's obj.LSym and initializes it based on the properties of f. This includes setting the symbol flags and ABI and creating and initializing related DWARF symbols.
InitLSym must be called exactly once per function and must be called for both functions with bodies and functions without bodies. For body-less functions, we only create the LSym; for functions with bodies call a helper to setup up / populate the LSym.
func Int64Val(n Node) int64
Int64Val returns n as an int64. n must be an integer or rune constant.
func IntVal(t *types.Type, v constant.Value) int64
IntVal returns v converted to int64. Note: if t is uint64, very large values will be converted to negative int64.
func IsAddressable(n Node) bool
lvalue etc
func IsAutoTmp(n Node) bool
IsAutoTmp indicates if n was created by the compiler as a temporary, based on the setting of the .AutoTemp flag in n's Name.
func IsBlank(n Node) bool
func IsConst(n Node, ct constant.Kind) bool
func IsConstNode(n Node) bool
IsConstNode reports whether n is a Go language constant (as opposed to a compile-time constant).
Expressions derived from nil, like string([]byte(nil)), while they may be known at compile time, are not Go language constants.
func IsFuncPCIntrinsic(n *CallExpr) bool
IsFuncPCIntrinsic returns whether n is a direct call of internal/abi.FuncPCABIxxx functions.
func IsMethod(n Node) bool
IsMethod reports whether n is a method. n must be a function or a method.
func IsNil(n Node) bool
IsNil reports whether n represents the universal untyped zero value "nil".
func IsReflectHeaderDataField(l Node) bool
IsReflectHeaderDataField reports whether l is an expression p.Data where p has type reflect.SliceHeader or reflect.StringHeader.
func IsSmallIntConst(n Node) bool
func IsSynthetic(n Node) bool
func IsTrivialClosure(clo *ClosureExpr) bool
IsTrivialClosure reports whether closure clo has an empty list of captured vars.
func IsZero(n Node) bool
func Line(n Node) string
Line returns n's position as a string. If n has been inlined, it uses the outermost position where n has been inlined.
func LinkFuncName(f *Func) string
LinkFuncName returns the name of the function f, as it will appear in the symbol table of the final linked binary.
func LookupMethodSelector(pkg *types.Pkg, name string) (typ, meth *types.Sym, err error)
LookupMethodSelector returns the types.Sym of the selector for a method named in local symbol name, as well as the types.Sym of the receiver.
TODO(prattmic): this does not attempt to handle method suffixes (wrappers).
func MayBeShared(n Node) bool
MayBeShared reports whether n may occur in multiple places in the AST. Extra care must be taken when mutating such a node.
func MethodExprFunc(n Node) *types.Field
MethodExprFunc is like MethodExprName, but returns the types.Field instead.
func MethodSym(recv *types.Type, msym *types.Sym) *types.Sym
MethodSym returns the method symbol representing a method name associated with a specific receiver type.
Method symbols can be used to distinguish the same method appearing in different method sets. For example, T.M and (*T).M have distinct method symbols.
The returned symbol will be marked as a function.
func MethodSymSuffix(recv *types.Type, msym *types.Sym, suffix string) *types.Sym
MethodSymSuffix is like MethodSym, but allows attaching a distinguisher suffix. To avoid collisions, the suffix must not start with a letter, number, or period.
func ParseLinkFuncName(name string) (pkg, sym string, err error)
ParseLinkFuncName parsers a symbol name (as returned from LinkFuncName) back to the package path and local symbol name.
func PkgFuncName(f *Func) string
PkgFuncName returns the name of the function referenced by f, with package prepended.
This differs from the compiler's internal convention where local functions lack a package. This is primarily useful when the ultimate consumer of this is a human looking at message.
func Reassigned(name *Name) bool
Reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean indicating whether the name has any assignments other than its declaration. NB: global variables are always considered to be re-assigned. TODO: handle initial declaration not including an assignment and followed by a single assignment? NOTE: any changes made here should also be made in the corresponding code in the ReassignOracle.Init method.
func SameSafeExpr(l Node, r Node) bool
SameSafeExpr checks whether it is safe to reuse one of l and r instead of computing both. SameSafeExpr assumes that l and r are used in the same statement or expression. In order for it to be safe to reuse l or r, they must:
The handling of OINDEXMAP is subtle. OINDEXMAP can occur both as an lvalue (map assignment) and an rvalue (map access). This is currently OK, since the only place SameSafeExpr gets used on an lvalue expression is for OSLICE and OAPPEND optimizations, and it is correct in those settings.
func SameSource(n1, n2 Node) bool
SameSource reports whether two nodes refer to the same source element.
It exists to help incrementally migrate the compiler towards allowing the introduction of IdentExpr (#42990). Once we have IdentExpr, it will no longer be safe to directly compare Node values to tell if they refer to the same Name. Instead, code will need to explicitly get references to the underlying Name object(s), and compare those instead.
It will still be safe to compare Nodes directly for checking if two nodes are syntactically the same. The SameSource function exists to indicate code that intentionally compares Nodes for syntactic equality as opposed to code that has yet to be updated in preparation for IdentExpr.
func SetPos(n Node) src.XPos
func ShouldAsanCheckPtr(fn *Func) bool
ShouldAsanCheckPtr reports whether pointer checking should be enabled for function fn when -asan is enabled.
func ShouldCheckPtr(fn *Func, level int) bool
ShouldCheckPtr reports whether pointer checking should be enabled for function fn at a given level. See debugHelpFooter for defined levels.
func StmtWithInit(op Op) bool
StmtWithInit reports whether op is a statement with an explicit init list.
func StringVal(n Node) string
StringVal returns the value of a literal string Node as a string. n must be a string constant.
func Uint64Val(n Node) uint64
Uint64Val returns n as a uint64. n must be an integer or rune constant.
func Uses(x Node, v *Name) bool
Uses reports whether expression x is a (direct) use of the given variable.
func ValidTypeForConst(t *types.Type, v constant.Value) bool
func Visit(n Node, visit func(Node))
Visit visits each non-nil node x in the IR tree rooted at n in a depth-first preorder traversal, calling visit on each node visited.
func VisitFuncAndClosures(fn *Func, visit func(n Node))
VisitFuncAndClosures calls visit on each non-nil node in fn.Body, including any nested closure bodies.
func VisitFuncsBottomUp(list []*Func, analyze func(list []*Func, recursive bool))
VisitFuncsBottomUp invokes analyze on the ODCLFUNC nodes listed in list. It calls analyze with successive groups of functions, working from the bottom of the call graph upward. Each time analyze is called with a list of functions, every function on that list only calls other functions on the list or functions that have been passed in previous invocations of analyze. Closures appear in the same list as their outer functions. The lists are as short as possible while preserving those requirements. (In a typical program, many invocations of analyze will be passed just a single function.) The boolean argument 'recursive' passed to analyze specifies whether the functions on the list are mutually recursive. If recursive is false, the list consists of only a single function and its closures. If recursive is true, the list may still contain only a single function, if that function is itself recursive.
func VisitList(list Nodes, visit func(Node))
VisitList calls Visit(x, visit) for each node x in the list.
func WithFunc(curfn *Func, do func())
WithFunc invokes do with CurFunc and base.Pos set to curfn and curfn.Pos(), respectively, and then restores their previous values before returning.
An AddStringExpr is a string concatenation List[0] + List[1] + ... + List[len(List)-1].
type AddStringExpr struct { List Nodes Prealloc *Name // contains filtered or unexported fields }
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr
func (n *AddStringExpr) Bounded() bool
func (n *AddStringExpr) Format(s fmt.State, verb rune)
func (n *AddStringExpr) Init() Nodes
func (n *AddStringExpr) MarkNonNil()
func (n *AddStringExpr) NonNil() bool
func (n *AddStringExpr) PtrInit() *Nodes
func (n *AddStringExpr) SetBounded(b bool)
func (n *AddStringExpr) SetInit(x Nodes)
func (n *AddStringExpr) SetTransient(b bool)
func (n *AddStringExpr) SetType(x *types.Type)
func (n *AddStringExpr) Transient() bool
func (n *AddStringExpr) Type() *types.Type
An AddrExpr is an address-of expression &X. It may end up being a normal address-of or an allocation of a composite literal.
type AddrExpr struct { X Node Prealloc *Name // preallocated storage if any // contains filtered or unexported fields }
func NewAddrExpr(pos src.XPos, x Node) *AddrExpr
func (n *AddrExpr) Bounded() bool
func (n *AddrExpr) Format(s fmt.State, verb rune)
func (n *AddrExpr) Implicit() bool
func (n *AddrExpr) Init() Nodes
func (n *AddrExpr) MarkNonNil()
func (n *AddrExpr) NonNil() bool
func (n *AddrExpr) PtrInit() *Nodes
func (n *AddrExpr) SetBounded(b bool)
func (n *AddrExpr) SetImplicit(b bool)
func (n *AddrExpr) SetInit(x Nodes)
func (n *AddrExpr) SetOp(op Op)
func (n *AddrExpr) SetTransient(b bool)
func (n *AddrExpr) SetType(x *types.Type)
func (n *AddrExpr) Transient() bool
func (n *AddrExpr) Type() *types.Type
An AssignListStmt is an assignment statement with more than one item on at least one side: Lhs = Rhs. If Def is true, the assignment is a :=.
type AssignListStmt struct { Lhs Nodes Def bool Rhs Nodes // contains filtered or unexported fields }
func NewAssignListStmt(pos src.XPos, op Op, lhs, rhs []Node) *AssignListStmt
func (n *AssignListStmt) Format(s fmt.State, verb rune)
func (n *AssignListStmt) Init() Nodes
func (n *AssignListStmt) PtrInit() *Nodes
func (n *AssignListStmt) SetInit(x Nodes)
func (n *AssignListStmt) SetOp(op Op)
An AssignOpStmt is an AsOp= assignment statement: X AsOp= Y.
type AssignOpStmt struct { X Node AsOp Op // OADD etc Y Node IncDec bool // actually ++ or -- // contains filtered or unexported fields }
func NewAssignOpStmt(pos src.XPos, asOp Op, x, y Node) *AssignOpStmt
func (n *AssignOpStmt) Format(s fmt.State, verb rune)
func (n *AssignOpStmt) Init() Nodes
func (n *AssignOpStmt) PtrInit() *Nodes
func (n *AssignOpStmt) SetInit(x Nodes)
An AssignStmt is a simple assignment statement: X = Y. If Def is true, the assignment is a :=.
type AssignStmt struct { X Node Def bool Y Node // contains filtered or unexported fields }
func NewAssignStmt(pos src.XPos, x, y Node) *AssignStmt
func (n *AssignStmt) Format(s fmt.State, verb rune)
func (n *AssignStmt) Init() Nodes
func (n *AssignStmt) PtrInit() *Nodes
func (n *AssignStmt) SetInit(x Nodes)
func (n *AssignStmt) SetOp(op Op)
A BasicLit is a literal of basic type.
type BasicLit struct {
// contains filtered or unexported fields
}
func (n *BasicLit) Bounded() bool
func (n *BasicLit) Format(s fmt.State, verb rune)
func (n *BasicLit) Init() Nodes
func (n *BasicLit) MarkNonNil()
func (n *BasicLit) NonNil() bool
func (n *BasicLit) PtrInit() *Nodes
func (n *BasicLit) SetBounded(b bool)
func (n *BasicLit) SetInit(x Nodes)
func (n *BasicLit) SetTransient(b bool)
func (n *BasicLit) SetType(x *types.Type)
func (n *BasicLit) SetVal(val constant.Value)
func (n *BasicLit) Transient() bool
func (n *BasicLit) Type() *types.Type
func (n *BasicLit) Val() constant.Value
A BinaryExpr is a binary expression X Op Y, or Op(X, Y) for builtin functions that do not become calls.
type BinaryExpr struct { X Node Y Node RType Node `mknode:"-"` // see reflectdata/helpers.go // contains filtered or unexported fields }
func NewBinaryExpr(pos src.XPos, op Op, x, y Node) *BinaryExpr
func (n *BinaryExpr) Bounded() bool
func (n *BinaryExpr) Format(s fmt.State, verb rune)
func (n *BinaryExpr) Init() Nodes
func (n *BinaryExpr) MarkNonNil()
func (n *BinaryExpr) NonNil() bool
func (n *BinaryExpr) PtrInit() *Nodes
func (n *BinaryExpr) SetBounded(b bool)
func (n *BinaryExpr) SetInit(x Nodes)
func (n *BinaryExpr) SetOp(op Op)
func (n *BinaryExpr) SetTransient(b bool)
func (n *BinaryExpr) SetType(x *types.Type)
func (n *BinaryExpr) Transient() bool
func (n *BinaryExpr) Type() *types.Type
A BlockStmt is a block: { List }.
type BlockStmt struct { List Nodes // contains filtered or unexported fields }
func NewBlockStmt(pos src.XPos, list []Node) *BlockStmt
func (n *BlockStmt) Format(s fmt.State, verb rune)
func (n *BlockStmt) Init() Nodes
func (n *BlockStmt) PtrInit() *Nodes
func (n *BlockStmt) SetInit(x Nodes)
A BranchStmt is a break, continue, fallthrough, or goto statement.
type BranchStmt struct { Label *types.Sym // label if present // contains filtered or unexported fields }
func NewBranchStmt(pos src.XPos, op Op, label *types.Sym) *BranchStmt
func (n *BranchStmt) Format(s fmt.State, verb rune)
func (n *BranchStmt) Init() Nodes
func (n *BranchStmt) PtrInit() *Nodes
func (n *BranchStmt) SetInit(x Nodes)
func (n *BranchStmt) SetOp(op Op)
func (n *BranchStmt) Sym() *types.Sym
A CallExpr is a function call Fun(Args).
type CallExpr struct { Fun Node Args Nodes DeferAt Node RType Node `mknode:"-"` // see reflectdata/helpers.go KeepAlive []*Name // vars to be kept alive until call returns IsDDD bool GoDefer bool // whether this call is part of a go or defer statement NoInline bool // whether this call must not be inlined // contains filtered or unexported fields }
func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr
func (n *CallExpr) Bounded() bool
func (n *CallExpr) Format(s fmt.State, verb rune)
func (n *CallExpr) Init() Nodes
func (n *CallExpr) MarkNonNil()
func (n *CallExpr) NonNil() bool
func (n *CallExpr) PtrInit() *Nodes
func (n *CallExpr) SetBounded(b bool)
func (n *CallExpr) SetInit(x Nodes)
func (n *CallExpr) SetOp(op Op)
func (n *CallExpr) SetTransient(b bool)
func (n *CallExpr) SetType(x *types.Type)
func (n *CallExpr) Transient() bool
func (n *CallExpr) Type() *types.Type
A CaseClause is a case statement in a switch or select: case List: Body.
type CaseClause struct { Var *Name // declared variable for this case in type switch List Nodes // list of expressions for switch, early select // RTypes is a list of RType expressions, which are copied to the // corresponding OEQ nodes that are emitted when switch statements // are desugared. RTypes[i] must be non-nil if the emitted // comparison for List[i] will be a mixed interface/concrete // comparison; see reflectdata.CompareRType for details. // // Because mixed interface/concrete switch cases are rare, we allow // len(RTypes) < len(List). Missing entries are implicitly nil. RTypes Nodes Body Nodes // contains filtered or unexported fields }
func NewCaseStmt(pos src.XPos, list, body []Node) *CaseClause
func (n *CaseClause) Format(s fmt.State, verb rune)
func (n *CaseClause) Init() Nodes
func (n *CaseClause) PtrInit() *Nodes
func (n *CaseClause) SetInit(x Nodes)
The Class of a variable/function describes the "storage class" of a variable or function. During parsing, storage classes are called declaration contexts.
type Class uint8
const ( Pxxx Class = iota // no class; used during ssa conversion to indicate pseudo-variables PEXTERN // global variables PAUTO // local variables PAUTOHEAP // local variables or parameters moved to heap PPARAM // input arguments PPARAMOUT // output results PTYPEPARAM // type params PFUNC // global functions )
func (i Class) String() string
A ClosureExpr is a function literal expression.
type ClosureExpr struct { Func *Func `mknode:"-"` Prealloc *Name IsGoWrap bool // whether this is wrapper closure of a go statement // contains filtered or unexported fields }
func (n *ClosureExpr) Bounded() bool
func (n *ClosureExpr) Format(s fmt.State, verb rune)
func (n *ClosureExpr) Init() Nodes
func (n *ClosureExpr) MarkNonNil()
func (n *ClosureExpr) NonNil() bool
func (n *ClosureExpr) PtrInit() *Nodes
func (n *ClosureExpr) SetBounded(b bool)
func (n *ClosureExpr) SetInit(x Nodes)
func (n *ClosureExpr) SetTransient(b bool)
func (n *ClosureExpr) SetType(x *types.Type)
func (n *ClosureExpr) Transient() bool
func (n *ClosureExpr) Type() *types.Type
type CommClause struct { Comm Node // communication case Body Nodes // contains filtered or unexported fields }
func NewCommStmt(pos src.XPos, comm Node, body []Node) *CommClause
func (n *CommClause) Format(s fmt.State, verb rune)
func (n *CommClause) Init() Nodes
func (n *CommClause) PtrInit() *Nodes
func (n *CommClause) SetInit(x Nodes)
A CompLitExpr is a composite literal Type{Vals}. Before type-checking, the type is Ntype.
type CompLitExpr struct { List Nodes // initialized values RType Node `mknode:"-"` // *runtime._type for OMAPLIT map types Prealloc *Name // For OSLICELIT, Len is the backing array length. // For OMAPLIT, Len is the number of entries that we've removed from List and // generated explicit mapassign calls for. This is used to inform the map alloc hint. Len int64 // contains filtered or unexported fields }
func NewCompLitExpr(pos src.XPos, op Op, typ *types.Type, list []Node) *CompLitExpr
func (n *CompLitExpr) Bounded() bool
func (n *CompLitExpr) Format(s fmt.State, verb rune)
func (n *CompLitExpr) Implicit() bool
func (n *CompLitExpr) Init() Nodes
func (n *CompLitExpr) MarkNonNil()
func (n *CompLitExpr) NonNil() bool
func (n *CompLitExpr) PtrInit() *Nodes
func (n *CompLitExpr) SetBounded(b bool)
func (n *CompLitExpr) SetImplicit(b bool)
func (n *CompLitExpr) SetInit(x Nodes)
func (n *CompLitExpr) SetOp(op Op)
func (n *CompLitExpr) SetTransient(b bool)
func (n *CompLitExpr) SetType(x *types.Type)
func (n *CompLitExpr) Transient() bool
func (n *CompLitExpr) Type() *types.Type
A ConvExpr is a conversion Type(X). It may end up being a value or a type.
type ConvExpr struct { X Node // For implementing OCONVIFACE expressions. // // TypeWord is an expression yielding a *runtime._type or // *runtime.itab value to go in the type word of the iface/eface // result. See reflectdata.ConvIfaceTypeWord for further details. // // SrcRType is an expression yielding a *runtime._type value for X, // if it's not pointer-shaped and needs to be heap allocated. TypeWord Node `mknode:"-"` SrcRType Node `mknode:"-"` // For -d=checkptr instrumentation of conversions from // unsafe.Pointer to *Elem or *[Len]Elem. // // TODO(mdempsky): We only ever need one of these, but currently we // don't decide which one until walk. Longer term, it probably makes // sense to have a dedicated IR op for `(*[Len]Elem)(ptr)[:n:m]` // expressions. ElemRType Node `mknode:"-"` ElemElemRType Node `mknode:"-"` // contains filtered or unexported fields }
func NewConvExpr(pos src.XPos, op Op, typ *types.Type, x Node) *ConvExpr
func (n *ConvExpr) Bounded() bool
func (n *ConvExpr) CheckPtr() bool
func (n *ConvExpr) Format(s fmt.State, verb rune)
func (n *ConvExpr) Implicit() bool
func (n *ConvExpr) Init() Nodes
func (n *ConvExpr) MarkNonNil()
func (n *ConvExpr) NonNil() bool
func (n *ConvExpr) PtrInit() *Nodes
func (n *ConvExpr) SetBounded(b bool)
func (n *ConvExpr) SetCheckPtr(b bool)
func (n *ConvExpr) SetImplicit(b bool)
func (n *ConvExpr) SetInit(x Nodes)
func (n *ConvExpr) SetOp(op Op)
func (n *ConvExpr) SetTransient(b bool)
func (n *ConvExpr) SetType(x *types.Type)
func (n *ConvExpr) Transient() bool
func (n *ConvExpr) Type() *types.Type
A Decl is a declaration of a const, type, or var. (A declared func is a Func.)
type Decl struct { X *Name // the thing being declared // contains filtered or unexported fields }
func NewDecl(pos src.XPos, op Op, x *Name) *Decl
func (n *Decl) Esc() uint16
func (n *Decl) Format(s fmt.State, verb rune)
func (n *Decl) Init() Nodes
func (n *Decl) MarkNonNil()
func (n *Decl) Name() *Name
func (n *Decl) NonNil() bool
func (n *Decl) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (n *Decl) Pos() src.XPos
func (n *Decl) SetEsc(x uint16)
func (n *Decl) SetPos(x src.XPos)
func (n *Decl) SetType(*types.Type)
func (n *Decl) SetTypecheck(x uint8)
func (n *Decl) SetVal(v constant.Value)
func (n *Decl) SetWalked(x bool)
func (n *Decl) Sym() *types.Sym
func (n *Decl) Type() *types.Type
func (n *Decl) Typecheck() uint8
func (n *Decl) Val() constant.Value
func (n *Decl) Walked() bool
A DynamicType represents a type expression whose exact type must be computed dynamically.
type DynamicType struct { // RType is an expression that yields a *runtime._type value // representing the asserted type. // // BUG(mdempsky): If ITab is non-nil, RType may be nil. RType Node // ITab is an expression that yields a *runtime.itab value // representing the asserted type within the assertee expression's // original interface type. // // ITab is only used for assertions (including type switches) from // non-empty interface type to a concrete (i.e., non-interface) // type. For all other assertions, ITab is nil. ITab Node // contains filtered or unexported fields }
func NewDynamicType(pos src.XPos, rtype Node) *DynamicType
func (n *DynamicType) Bounded() bool
func (n *DynamicType) Format(s fmt.State, verb rune)
func (n *DynamicType) Init() Nodes
func (n *DynamicType) MarkNonNil()
func (n *DynamicType) NonNil() bool
func (n *DynamicType) PtrInit() *Nodes
func (n *DynamicType) SetBounded(b bool)
func (n *DynamicType) SetInit(x Nodes)
func (n *DynamicType) SetTransient(b bool)
func (n *DynamicType) SetType(x *types.Type)
func (n *DynamicType) Transient() bool
func (n *DynamicType) Type() *types.Type
A DynamicTypeAssertExpr asserts that X is of dynamic type RType.
type DynamicTypeAssertExpr struct { X Node // SrcRType is an expression that yields a *runtime._type value // representing X's type. It's used in failed assertion panic // messages. SrcRType Node // RType is an expression that yields a *runtime._type value // representing the asserted type. // // BUG(mdempsky): If ITab is non-nil, RType may be nil. RType Node // ITab is an expression that yields a *runtime.itab value // representing the asserted type within the assertee expression's // original interface type. // // ITab is only used for assertions from non-empty interface type to // a concrete (i.e., non-interface) type. For all other assertions, // ITab is nil. ITab Node // contains filtered or unexported fields }
func NewDynamicTypeAssertExpr(pos src.XPos, op Op, x, rtype Node) *DynamicTypeAssertExpr
func (n *DynamicTypeAssertExpr) Bounded() bool
func (n *DynamicTypeAssertExpr) Format(s fmt.State, verb rune)
func (n *DynamicTypeAssertExpr) Init() Nodes
func (n *DynamicTypeAssertExpr) MarkNonNil()
func (n *DynamicTypeAssertExpr) NonNil() bool
func (n *DynamicTypeAssertExpr) PtrInit() *Nodes
func (n *DynamicTypeAssertExpr) SetBounded(b bool)
func (n *DynamicTypeAssertExpr) SetInit(x Nodes)
func (n *DynamicTypeAssertExpr) SetOp(op Op)
func (n *DynamicTypeAssertExpr) SetTransient(b bool)
func (n *DynamicTypeAssertExpr) SetType(x *types.Type)
func (n *DynamicTypeAssertExpr) Transient() bool
func (n *DynamicTypeAssertExpr) Type() *types.Type
type Embed struct { Pos src.XPos Patterns []string }
An Expr is a Node that can appear as an expression.
type Expr interface { Node // contains filtered or unexported methods }
A ForStmt is a non-range for loop: for Init; Cond; Post { Body }
type ForStmt struct { Label *types.Sym Cond Node Post Node Body Nodes DistinctVars bool // contains filtered or unexported fields }
func NewForStmt(pos src.XPos, init Node, cond, post Node, body []Node, distinctVars bool) *ForStmt
func (n *ForStmt) Format(s fmt.State, verb rune)
func (n *ForStmt) Init() Nodes
func (n *ForStmt) PtrInit() *Nodes
func (n *ForStmt) SetInit(x Nodes)
A Func corresponds to a single function in a Go program (and vice versa: each function is denoted by exactly one *Func).
There are multiple nodes that represent a Func in the IR.
The ONAME node (Func.Nname) is used for plain references to it. The ODCLFUNC node (the Func itself) is used for its declaration code. The OCLOSURE node (Func.OClosure) is used for a reference to a function literal.
An imported function will have an ONAME node which points to a Func with an empty body. A declared function or method has an ODCLFUNC (the Func itself) and an ONAME. A function literal is represented directly by an OCLOSURE, but it also has an ODCLFUNC (and a matching ONAME) representing the compiled underlying form of the closure, which accesses the captured variables using a special data structure passed in a register.
A method declaration is represented like functions, except f.Sym will be the qualified method name (e.g., "T.m").
A method expression (T.M) is represented as an OMETHEXPR node, in which n.Left and n.Right point to the type and method, respectively. Each distinct mention of a method expression in the source code constructs a fresh node.
A method value (t.M) is represented by ODOTMETH/ODOTINTER when it is called directly and by OMETHVALUE otherwise. These are like method expressions, except that for ODOTMETH/ODOTINTER, the method name is stored in Sym instead of Right. Each OMETHVALUE ends up being implemented as a new function, a bit like a closure, with its own ODCLFUNC. The OMETHVALUE uses n.Func to record the linkage to the generated ODCLFUNC, but there is no pointer from the Func back to the OMETHVALUE.
type Func struct { Body Nodes Nname *Name // ONAME node OClosure *ClosureExpr // OCLOSURE node // ONAME nodes for all params/locals for this func/closure, does NOT // include closurevars until transforming closures during walk. // Names must be listed PPARAMs, PPARAMOUTs, then PAUTOs, // with PPARAMs and PPARAMOUTs in order corresponding to the function signature. // Anonymous and blank params are declared as ~pNN (for PPARAMs) and ~rNN (for PPARAMOUTs). Dcl []*Name // ClosureVars lists the free variables that are used within a // function literal, but formally declared in an enclosing // function. The variables in this slice are the closure function's // own copy of the variables, which are used within its function // body. They will also each have IsClosureVar set, and will have // Byval set if they're captured by value. ClosureVars []*Name // Enclosed functions that need to be compiled. // Populated during walk. Closures []*Func // Parent of a closure ClosureParent *Func // Parents records the parent scope of each scope within a // function. The root scope (0) has no parent, so the i'th // scope's parent is stored at Parents[i-1]. Parents []ScopeID // Marks records scope boundary changes. Marks []Mark FieldTrack map[*obj.LSym]struct{} DebugInfo interface{} LSym *obj.LSym // Linker object in this function's native ABI (Func.ABI) Inl *Inline // RangeParent, if non-nil, is the first non-range body function containing // the closure for the body of a range function. RangeParent *Func Label int32 // largest auto-generated label in this function Endlineno src.XPos WBPos src.XPos // position of first write barrier; see SetWBPos Pragma PragmaFlag // go:xxx function annotations // ABI is a function's "definition" ABI. This is the ABI that // this function's generated code is expecting to be called by. // // For most functions, this will be obj.ABIInternal. It may be // a different ABI for functions defined in assembly or ABI wrappers. // // This is included in the export data and tracked across packages. ABI obj.ABI // ABIRefs is the set of ABIs by which this function is referenced. // For ABIs other than this function's definition ABI, the // compiler generates ABI wrapper functions. This is only tracked // within a package. ABIRefs obj.ABISet NumDefers int32 // number of defer calls in the function NumReturns int32 // number of explicit returns in the function // NWBRCalls records the LSyms of functions called by this // function for go:nowritebarrierrec analysis. Only filled in // if nowritebarrierrecCheck != nil. NWBRCalls *[]SymAndPos // For wrapper functions, WrappedFunc point to the original Func. // Currently only used for go/defer wrappers. WrappedFunc *Func // WasmImport is used by the //go:wasmimport directive to store info about // a WebAssembly function import. WasmImport *WasmImport // contains filtered or unexported fields }
var CurFunc *Func
func IsIfaceOfFunc(n Node) *Func
IsIfaceOfFunc inspects whether n is an interface conversion from a direct reference of a func. If so, it returns referenced Func; otherwise nil.
This is only usable before walk.walkConvertInterface, which converts to an OMAKEFACE.
func NewClosureFunc(fpos, cpos src.XPos, why Op, typ *types.Type, outerfn *Func, pkg *Package) *Func
NewClosureFunc creates a new Func to represent a function literal with the given type.
fpos the position used for the underlying ODCLFUNC and ONAME, whereas cpos is the position used for the OCLOSURE. They're separate because in the presence of inlining, the OCLOSURE node should have an inline-adjusted position, whereas the ODCLFUNC and ONAME must not.
outerfn is the enclosing function, if any. The returned function is appending to pkg.Funcs.
why is the reason we're generating this Func. It can be OCLOSURE (for a normal function literal) or OGO or ODEFER (for wrapping a call expression that has parameters or results).
func NewFunc(fpos, npos src.XPos, sym *types.Sym, typ *types.Type) *Func
NewFunc returns a new Func with the given name and type.
fpos is the position of the "func" token, and npos is the position of the name identifier.
TODO(mdempsky): I suspect there's no need for separate fpos and npos.
func (f *Func) ABIWrapper() bool
func (f *Func) ClosureResultsLost() bool
func (fn *Func) DeclareParams(setNname bool)
DeclareParams creates Names for all of the parameters in fn's signature and adds them to fn.Dcl.
If setNname is true, then it also sets types.Field.Nname for each parameter.
func (f *Func) Dupok() bool
func (n *Func) Esc() uint16
func (n *Func) Format(s fmt.State, verb rune)
func (f *Func) HasDefer() bool
func (n *Func) Init() Nodes
func (f *Func) InlinabilityChecked() bool
func (f *Func) IsDeadcodeClosure() bool
func (f *Func) IsHiddenClosure() bool
func (f *Func) IsPackageInit() bool
func (f *Func) Linksym() *obj.LSym
func (f *Func) LinksymABI(abi obj.ABI) *obj.LSym
func (n *Func) MarkNonNil()
func (n *Func) Name() *Name
func (f *Func) Needctxt() bool
func (f *Func) NeverReturns() bool
func (fn *Func) NewLocal(pos src.XPos, sym *types.Sym, typ *types.Type) *Name
NewLocal returns a new function-local variable with the given name and type.
func (f *Func) NilCheckDisabled() bool
func (n *Func) NonNil() bool
func (n *Func) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (f *Func) OpenCodedDeferDisallowed() bool
func (n *Func) Pos() src.XPos
func (f *Func) SetABIWrapper(b bool)
func (f *Func) SetClosureResultsLost(b bool)
func (f *Func) SetDupok(b bool)
func (n *Func) SetEsc(x uint16)
func (f *Func) SetHasDefer(b bool)
func (f *Func) SetInlinabilityChecked(b bool)
func (f *Func) SetIsDeadcodeClosure(b bool)
func (f *Func) SetIsHiddenClosure(b bool)
func (f *Func) SetIsPackageInit(b bool)
func (f *Func) SetNeedctxt(b bool)
func (f *Func) SetNeverReturns(b bool)
func (f *Func) SetNilCheckDisabled(b bool)
func (f *Func) SetOpenCodedDeferDisallowed(b bool)
func (n *Func) SetPos(x src.XPos)
func (n *Func) SetType(*types.Type)
func (n *Func) SetTypecheck(x uint8)
func (n *Func) SetVal(v constant.Value)
func (f *Func) SetWBPos(pos src.XPos)
func (n *Func) SetWalked(x bool)
func (f *Func) SetWrapper(b bool)
func (f *Func) Sym() *types.Sym
func (f *Func) Type() *types.Type
func (n *Func) Typecheck() uint8
func (n *Func) Val() constant.Value
func (n *Func) Walked() bool
func (f *Func) Wrapper() bool
A GoDeferStmt is a go or defer statement: go Call / defer Call.
The two opcodes use a single syntax because the implementations are very similar: both are concerned with saving Call and running it in a different context (a separate goroutine or a later time).
type GoDeferStmt struct { Call Node DeferAt Expr // contains filtered or unexported fields }
func NewGoDeferStmt(pos src.XPos, op Op, call Node) *GoDeferStmt
func (n *GoDeferStmt) Format(s fmt.State, verb rune)
func (n *GoDeferStmt) Init() Nodes
func (n *GoDeferStmt) PtrInit() *Nodes
func (n *GoDeferStmt) SetInit(x Nodes)
An Ident is an identifier, possibly qualified.
type Ident struct {
// contains filtered or unexported fields
}
func NewIdent(pos src.XPos, sym *types.Sym) *Ident
func (n *Ident) Bounded() bool
func (n *Ident) Format(s fmt.State, verb rune)
func (n *Ident) Init() Nodes
func (n *Ident) MarkNonNil()
func (n *Ident) NonNil() bool
func (n *Ident) PtrInit() *Nodes
func (n *Ident) SetBounded(b bool)
func (n *Ident) SetInit(x Nodes)
func (n *Ident) SetTransient(b bool)
func (n *Ident) SetType(x *types.Type)
func (n *Ident) Sym() *types.Sym
func (n *Ident) Transient() bool
func (n *Ident) Type() *types.Type
An IfStmt is a return statement: if Init; Cond { Body } else { Else }.
type IfStmt struct { Cond Node Body Nodes Else Nodes Likely bool // code layout hint // contains filtered or unexported fields }
func NewIfStmt(pos src.XPos, cond Node, body, els []Node) *IfStmt
func (n *IfStmt) Format(s fmt.State, verb rune)
func (n *IfStmt) Init() Nodes
func (n *IfStmt) PtrInit() *Nodes
func (n *IfStmt) SetInit(x Nodes)
An IndexExpr is an index expression X[Index].
type IndexExpr struct { X Node Index Node RType Node `mknode:"-"` // see reflectdata/helpers.go Assigned bool // contains filtered or unexported fields }
func NewIndexExpr(pos src.XPos, x, index Node) *IndexExpr
func (n *IndexExpr) Bounded() bool
func (n *IndexExpr) Format(s fmt.State, verb rune)
func (n *IndexExpr) Init() Nodes
func (n *IndexExpr) MarkNonNil()
func (n *IndexExpr) NonNil() bool
func (n *IndexExpr) PtrInit() *Nodes
func (n *IndexExpr) SetBounded(b bool)
func (n *IndexExpr) SetInit(x Nodes)
func (n *IndexExpr) SetOp(op Op)
func (n *IndexExpr) SetTransient(b bool)
func (n *IndexExpr) SetType(x *types.Type)
func (n *IndexExpr) Transient() bool
func (n *IndexExpr) Type() *types.Type
type InitNode interface { Node PtrInit() *Nodes SetInit(x Nodes) }
An Inline holds fields used for function bodies that can be inlined.
type Inline struct { Cost int32 // heuristic cost of inlining this function // Copy of Func.Dcl for use during inlining. This copy is needed // because the function's Dcl may change from later compiler // transformations. This field is also populated when a function // from another package is imported and inlined. Dcl []*Name HaveDcl bool // whether we've loaded Dcl // Function properties, encoded as a string (these are used for // making inlining decisions). See cmd/compile/internal/inline/inlheur. Properties string // CanDelayResults reports whether it's safe for the inliner to delay // initializing the result parameters until immediately before the // "return" statement. CanDelayResults bool }
An InlineMarkStmt is a marker placed just before an inlined body.
type InlineMarkStmt struct { Index int64 // contains filtered or unexported fields }
func NewInlineMarkStmt(pos src.XPos, index int64) *InlineMarkStmt
func (n *InlineMarkStmt) Format(s fmt.State, verb rune)
func (n *InlineMarkStmt) Init() Nodes
func (n *InlineMarkStmt) Offset() int64
func (n *InlineMarkStmt) PtrInit() *Nodes
func (n *InlineMarkStmt) SetInit(x Nodes)
func (n *InlineMarkStmt) SetOffset(x int64)
An InlinedCallExpr is an inlined function call.
type InlinedCallExpr struct { Body Nodes ReturnVars Nodes // must be side-effect free // contains filtered or unexported fields }
func NewInlinedCallExpr(pos src.XPos, body, retvars []Node) *InlinedCallExpr
func (n *InlinedCallExpr) Bounded() bool
func (n *InlinedCallExpr) Format(s fmt.State, verb rune)
func (n *InlinedCallExpr) Init() Nodes
func (n *InlinedCallExpr) MarkNonNil()
func (n *InlinedCallExpr) NonNil() bool
func (n *InlinedCallExpr) PtrInit() *Nodes
func (n *InlinedCallExpr) SetBounded(b bool)
func (n *InlinedCallExpr) SetInit(x Nodes)
func (n *InlinedCallExpr) SetTransient(b bool)
func (n *InlinedCallExpr) SetType(x *types.Type)
func (n *InlinedCallExpr) SingleResult() Node
func (n *InlinedCallExpr) Transient() bool
func (n *InlinedCallExpr) Type() *types.Type
An InterfaceSwitchStmt is used to implement type switches. Its semantics are:
if RuntimeType implements Descriptor.Cases[0] { Case, Itab = 0, itab<RuntimeType, Descriptor.Cases[0]> } else if RuntimeType implements Descriptor.Cases[1] { Case, Itab = 1, itab<RuntimeType, Descriptor.Cases[1]> ... } else if RuntimeType implements Descriptor.Cases[N-1] { Case, Itab = N-1, itab<RuntimeType, Descriptor.Cases[N-1]> } else { Case, Itab = len(cases), nil }
RuntimeType must be a non-nil *runtime._type. Hash must be the hash field of RuntimeType (or its copy loaded from an itab). Descriptor must represent an abi.InterfaceSwitch global variable.
type InterfaceSwitchStmt struct { Case Node Itab Node RuntimeType Node Hash Node Descriptor *obj.LSym // contains filtered or unexported fields }
func NewInterfaceSwitchStmt(pos src.XPos, case_, itab, runtimeType, hash Node, descriptor *obj.LSym) *InterfaceSwitchStmt
func (n *InterfaceSwitchStmt) Format(s fmt.State, verb rune)
func (n *InterfaceSwitchStmt) Init() Nodes
func (n *InterfaceSwitchStmt) PtrInit() *Nodes
func (n *InterfaceSwitchStmt) SetInit(x Nodes)
A JumpTableStmt is used to implement switches. Its semantics are:
tmp := jt.Idx if tmp == Cases[0] goto Targets[0] if tmp == Cases[1] goto Targets[1] ... if tmp == Cases[n] goto Targets[n]
Note that a JumpTableStmt is more like a multiway-goto than a multiway-if. In particular, the case bodies are just labels to jump to, not full Nodes lists.
type JumpTableStmt struct { // Value used to index the jump table. // We support only integer types that // are at most the size of a uintptr. Idx Node // If Idx is equal to Cases[i], jump to Targets[i]. // Cases entries must be distinct and in increasing order. // The length of Cases and Targets must be equal. Cases []constant.Value Targets []*types.Sym // contains filtered or unexported fields }
func NewJumpTableStmt(pos src.XPos, idx Node) *JumpTableStmt
func (n *JumpTableStmt) Format(s fmt.State, verb rune)
func (n *JumpTableStmt) Init() Nodes
func (n *JumpTableStmt) PtrInit() *Nodes
func (n *JumpTableStmt) SetInit(x Nodes)
A KeyExpr is a Key: Value composite literal key.
type KeyExpr struct { Key Node Value Node // contains filtered or unexported fields }
func NewKeyExpr(pos src.XPos, key, value Node) *KeyExpr
func (n *KeyExpr) Bounded() bool
func (n *KeyExpr) Format(s fmt.State, verb rune)
func (n *KeyExpr) Init() Nodes
func (n *KeyExpr) MarkNonNil()
func (n *KeyExpr) NonNil() bool
func (n *KeyExpr) PtrInit() *Nodes
func (n *KeyExpr) SetBounded(b bool)
func (n *KeyExpr) SetInit(x Nodes)
func (n *KeyExpr) SetTransient(b bool)
func (n *KeyExpr) SetType(x *types.Type)
func (n *KeyExpr) Transient() bool
func (n *KeyExpr) Type() *types.Type
A LabelStmt is a label statement (just the label, not including the statement it labels).
type LabelStmt struct { Label *types.Sym // "Label:" // contains filtered or unexported fields }
func NewLabelStmt(pos src.XPos, label *types.Sym) *LabelStmt
func (n *LabelStmt) Format(s fmt.State, verb rune)
func (n *LabelStmt) Init() Nodes
func (n *LabelStmt) PtrInit() *Nodes
func (n *LabelStmt) SetInit(x Nodes)
func (n *LabelStmt) Sym() *types.Sym
A LinksymOffsetExpr refers to an offset within a global variable. It is like a SelectorExpr but without the field name.
type LinksymOffsetExpr struct { Linksym *obj.LSym Offset_ int64 // contains filtered or unexported fields }
func NewLinksymExpr(pos src.XPos, lsym *obj.LSym, typ *types.Type) *LinksymOffsetExpr
NewLinksymExpr is NewLinksymOffsetExpr, but with offset fixed at 0.
func NewLinksymOffsetExpr(pos src.XPos, lsym *obj.LSym, offset int64, typ *types.Type) *LinksymOffsetExpr
func NewNameOffsetExpr(pos src.XPos, name *Name, offset int64, typ *types.Type) *LinksymOffsetExpr
NewNameOffsetExpr is NewLinksymOffsetExpr, but taking a *Name representing a global variable instead of an *obj.LSym directly.
func (n *LinksymOffsetExpr) Bounded() bool
func (n *LinksymOffsetExpr) Format(s fmt.State, verb rune)
func (n *LinksymOffsetExpr) Init() Nodes
func (n *LinksymOffsetExpr) MarkNonNil()
func (n *LinksymOffsetExpr) NonNil() bool
func (n *LinksymOffsetExpr) PtrInit() *Nodes
func (n *LinksymOffsetExpr) SetBounded(b bool)
func (n *LinksymOffsetExpr) SetInit(x Nodes)
func (n *LinksymOffsetExpr) SetTransient(b bool)
func (n *LinksymOffsetExpr) SetType(x *types.Type)
func (n *LinksymOffsetExpr) Transient() bool
func (n *LinksymOffsetExpr) Type() *types.Type
A LogicalExpr is an expression X Op Y where Op is && or ||. It is separate from BinaryExpr to make room for statements that must be executed before Y but after X.
type LogicalExpr struct { X Node Y Node // contains filtered or unexported fields }
func NewLogicalExpr(pos src.XPos, op Op, x, y Node) *LogicalExpr
func (n *LogicalExpr) Bounded() bool
func (n *LogicalExpr) Format(s fmt.State, verb rune)
func (n *LogicalExpr) Init() Nodes
func (n *LogicalExpr) MarkNonNil()
func (n *LogicalExpr) NonNil() bool
func (n *LogicalExpr) PtrInit() *Nodes
func (n *LogicalExpr) SetBounded(b bool)
func (n *LogicalExpr) SetInit(x Nodes)
func (n *LogicalExpr) SetOp(op Op)
func (n *LogicalExpr) SetTransient(b bool)
func (n *LogicalExpr) SetType(x *types.Type)
func (n *LogicalExpr) Transient() bool
func (n *LogicalExpr) Type() *types.Type
A MakeExpr is a make expression: make(Type[, Len[, Cap]]). Op is OMAKECHAN, OMAKEMAP, OMAKESLICE, or OMAKESLICECOPY, but *not* OMAKE (that's a pre-typechecking CallExpr).
type MakeExpr struct { RType Node `mknode:"-"` // see reflectdata/helpers.go Len Node Cap Node // contains filtered or unexported fields }
func NewMakeExpr(pos src.XPos, op Op, len, cap Node) *MakeExpr
func (n *MakeExpr) Bounded() bool
func (n *MakeExpr) Format(s fmt.State, verb rune)
func (n *MakeExpr) Init() Nodes
func (n *MakeExpr) MarkNonNil()
func (n *MakeExpr) NonNil() bool
func (n *MakeExpr) PtrInit() *Nodes
func (n *MakeExpr) SetBounded(b bool)
func (n *MakeExpr) SetInit(x Nodes)
func (n *MakeExpr) SetOp(op Op)
func (n *MakeExpr) SetTransient(b bool)
func (n *MakeExpr) SetType(x *types.Type)
func (n *MakeExpr) Transient() bool
func (n *MakeExpr) Type() *types.Type
A Mark represents a scope boundary.
type Mark struct { // Pos is the position of the token that marks the scope // change. Pos src.XPos // Scope identifies the innermost scope to the right of Pos. Scope ScopeID }
Name holds Node fields used only by named nodes (ONAME, OTYPE, some OLITERAL).
type Name struct { BuiltinOp Op // uint8 Class Class // uint8 DictIndex uint16 // index of the dictionary entry describing the type of this variable declaration plus 1 Func *Func // TODO(austin): nil for I.M Offset_ int64 Opt interface{} // for use by escape analysis Embed *[]Embed // list of embedded files, for ONAME var // For a local variable (not param) or extern, the initializing assignment (OAS or OAS2). // For a closure var, the ONAME node of the original (outermost) captured variable. // For the case-local variables of a type switch, the type switch guard (OTYPESW). // For a range variable, the range statement (ORANGE) // For a recv variable in a case of a select statement, the receive assignment (OSELRECV2) // For the name of a function, points to corresponding Func node. Defn Node // The function, method, or closure in which local variable or param is declared. Curfn *Func Heapaddr *Name // temp holding heap address of param // Outer points to the immediately enclosing function's copy of this // closure variable. If not a closure variable, then Outer is nil. Outer *Name // contains filtered or unexported fields }
var BlankNode *Name
func MethodExprName(n Node) *Name
MethodExprName returns the ONAME representing the method referenced by expression n, which must be a method selector, method expression, or method value.
func NewBuiltin(sym *types.Sym, op Op) *Name
NewBuiltin returns a new Name representing a builtin function, either predeclared or from package unsafe.
func NewClosureVar(pos src.XPos, fn *Func, n *Name) *Name
NewClosureVar returns a new closure variable for fn to refer to outer variable n.
func NewConstAt(pos src.XPos, sym *types.Sym, typ *types.Type, val constant.Value) *Name
NewConstAt returns a new OLITERAL Node associated with symbol s at position pos.
func NewDeclNameAt(pos src.XPos, op Op, sym *types.Sym) *Name
NewDeclNameAt returns a new Name associated with symbol s at position pos. The caller is responsible for setting Curfn.
func NewHiddenParam(pos src.XPos, fn *Func, sym *types.Sym, typ *types.Type) *Name
NewHiddenParam returns a new hidden parameter for fn with the given name and type.
func NewNameAt(pos src.XPos, sym *types.Sym, typ *types.Type) *Name
NewNameAt returns a new ONAME Node associated with symbol s at position pos. The caller is responsible for setting Curfn.
func StaticCalleeName(n Node) *Name
StaticCalleeName returns the ONAME/PFUNC for n, if known.
func (n *Name) Addrtaken() bool
func (n *Name) Alias() bool
Alias reports whether p, which must be for an OTYPE, is a type alias.
func (n *Name) AutoTemp() bool
func (n *Name) Bounded() bool
func (n *Name) Byval() bool
func (*Name) CanBeAnSSAAux()
func (*Name) CanBeAnSSASym()
func (*Name) CanBeNtype()
func (n *Name) Canonical() *Name
Canonical returns the logical declaration that n represents. If n is a closure variable, then Canonical returns the original Name as it appears in the function that immediately contains the declaration. Otherwise, Canonical simply returns n itself.
func (n *Name) CoverageAuxVar() bool
func (n *Name) Format(s fmt.State, verb rune)
func (n *Name) FrameOffset() int64
func (n *Name) Init() Nodes
func (n *Name) InlFormal() bool
func (n *Name) InlLocal() bool
func (n *Name) IsClosureVar() bool
func (n *Name) IsOutputParamHeapAddr() bool
func (n *Name) IsOutputParamInRegisters() bool
func (n *Name) Libfuzzer8BitCounter() bool
func (n *Name) Linksym() *obj.LSym
func (n *Name) LinksymABI(abi obj.ABI) *obj.LSym
func (n *Name) MarkNonNil()
func (n *Name) MarkReadonly()
MarkReadonly indicates that n is an ONAME with readonly contents.
func (n *Name) Name() *Name
func (n *Name) Needzero() bool
func (n *Name) NonMergeable() bool
func (n *Name) NonNil() bool
func (n *Name) OnStack() bool
OnStack reports whether variable n may reside on the stack.
func (n *Name) OpenDeferSlot() bool
func (n *Name) Pragma() PragmaFlag
Pragma returns the PragmaFlag for p, which must be for an OTYPE.
func (n *Name) PtrInit() *Nodes
func (n *Name) Readonly() bool
func (n *Name) RecordFrameOffset(offset int64)
RecordFrameOffset records the frame offset for the name. It is used by package types when laying out function arguments.
func (n *Name) SetAddrtaken(b bool)
func (n *Name) SetAlias(alias bool)
SetAlias sets whether p, which must be for an OTYPE, is a type alias.
func (n *Name) SetAutoTemp(b bool)
func (n *Name) SetBounded(b bool)
func (n *Name) SetByval(b bool)
func (n *Name) SetCoverageAuxVar(b bool)
func (n *Name) SetFrameOffset(x int64)
func (n *Name) SetFunc(x *Func)
func (n *Name) SetInit(x Nodes)
func (n *Name) SetInlFormal(b bool)
func (n *Name) SetInlLocal(b bool)
func (n *Name) SetIsClosureVar(b bool)
func (n *Name) SetIsOutputParamHeapAddr(b bool)
func (n *Name) SetIsOutputParamInRegisters(b bool)
func (n *Name) SetLibfuzzer8BitCounter(b bool)
func (n *Name) SetNeedzero(b bool)
func (n *Name) SetNonMergeable(b bool)
func (n *Name) SetOpenDeferSlot(b bool)
func (n *Name) SetPragma(flag PragmaFlag)
SetPragma sets the PragmaFlag for p, which must be for an OTYPE.
func (n *Name) SetSubOp(x Op)
func (n *Name) SetSym(x *types.Sym)
func (n *Name) SetTransient(b bool)
func (n *Name) SetType(x *types.Type)
func (n *Name) SetUsed(b bool)
func (n *Name) SetVal(v constant.Value)
SetVal sets the constant.Value for the node.
func (n *Name) SubOp() Op
func (n *Name) Sym() *types.Sym
func (n *Name) Transient() bool
func (n *Name) Type() *types.Type
func (n *Name) Used() bool
func (n *Name) Val() constant.Value
Val returns the constant.Value for the node.
NameQueue is a FIFO queue of *Name. The zero value of NameQueue is a ready-to-use empty queue.
type NameQueue struct {
// contains filtered or unexported fields
}
func (q *NameQueue) Empty() bool
Empty reports whether q contains no Names.
func (q *NameQueue) PopLeft() *Name
PopLeft pops a Name from the left of the queue. It panics if q is empty.
func (q *NameQueue) PushRight(n *Name)
PushRight appends n to the right of the queue.
NameSet is a set of Names.
type NameSet map[*Name]struct{}
func (s *NameSet) Add(n *Name)
Add adds n to s.
func (s NameSet) Has(n *Name) bool
Has reports whether s contains n.
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name
Sorted returns s sorted according to less.
A NilExpr represents the predefined untyped constant nil.
type NilExpr struct {
// contains filtered or unexported fields
}
func NewNilExpr(pos src.XPos, typ *types.Type) *NilExpr
func (n *NilExpr) Bounded() bool
func (n *NilExpr) Format(s fmt.State, verb rune)
func (n *NilExpr) Init() Nodes
func (n *NilExpr) MarkNonNil()
func (n *NilExpr) NonNil() bool
func (n *NilExpr) PtrInit() *Nodes
func (n *NilExpr) SetBounded(b bool)
func (n *NilExpr) SetInit(x Nodes)
func (n *NilExpr) SetTransient(b bool)
func (n *NilExpr) SetType(x *types.Type)
func (n *NilExpr) Transient() bool
func (n *NilExpr) Type() *types.Type
A Node is the abstract interface to an IR node.
type Node interface { // Formatting Format(s fmt.State, verb rune) // Source position. Pos() src.XPos SetPos(x src.XPos) // Abstract graph structure, for generic traversals. Op() Op Init() Nodes // Fields specific to certain Ops only. Type() *types.Type SetType(t *types.Type) Name() *Name Sym() *types.Sym Val() constant.Value SetVal(v constant.Value) // Storage for analysis passes. Esc() uint16 SetEsc(x uint16) // Typecheck values: // 0 means the node is not typechecked // 1 means the node is completely typechecked // 2 means typechecking of the node is in progress Typecheck() uint8 SetTypecheck(x uint8) NonNil() bool MarkNonNil() // contains filtered or unexported methods }
func Copy(n Node) Node
Copy returns a shallow copy of n.
func DeepCopy(pos src.XPos, n Node) Node
DeepCopy returns a “deep” copy of n, with its entire structure copied (except for shared nodes like ONAME, ONONAME, OLITERAL, and OTYPE). If pos.IsKnown(), it sets the source position of newly allocated Nodes to pos.
func DeepCopyList(pos src.XPos, list []Node) []Node
DeepCopyList returns a list of deep copies (using DeepCopy) of the nodes in list.
func FuncPC(pos src.XPos, n Node, wantABI obj.ABI) Node
FuncPC returns a uintptr-typed expression that evaluates to the PC of a function as uintptr, as returned by internal/abi.FuncPC{ABI0,ABIInternal}.
n should be a Node of an interface type, as is passed to internal/abi.FuncPC{ABI0,ABIInternal}.
TODO(prattmic): Since n is simply an interface{} there is no assertion that it is actually a function at all. Perhaps we should emit a runtime type assertion?
func InitExpr(init []Node, expr Node) Node
The result of InitExpr MUST be assigned back to n, e.g.
n.X = InitExpr(init, n.X)
func NewBasicLit(pos src.XPos, typ *types.Type, val constant.Value) Node
NewBasicLit returns an OLITERAL representing val with the given type.
func NewBool(pos src.XPos, b bool) Node
NewBool returns an OLITERAL representing b as an untyped boolean.
func NewConstExpr(val constant.Value, orig Node) Node
NewConstExpr returns an OLITERAL representing val, copying the position and type from orig.
func NewInt(pos src.XPos, v int64) Node
NewInt returns an OLITERAL representing v as an untyped integer.
func NewOne(pos src.XPos, typ *types.Type) Node
NewOne returns an OLITERAL representing 1 with the given type.
func NewString(pos src.XPos, s string) Node
NewString returns an OLITERAL representing s as an untyped string.
func NewUintptr(pos src.XPos, v int64) Node
NewUintptr returns an OLITERAL representing v as a uintptr.
func NewZero(pos src.XPos, typ *types.Type) Node
NewZero returns a zero value of the given type.
func OuterValue(n Node) Node
what's the outer value that a write to n affects? outer value means containing struct or array.
func ParamNames(ft *types.Type) []Node
func StaticValue(n Node) Node
StaticValue analyzes n to find the earliest expression that always evaluates to the same value as n, which might be from an enclosing function.
For example, given:
var x int = g() func() { y := x *p = int(y) }
calling StaticValue on the "int(y)" expression returns the outer "g()" expression.
func TypeNode(t *types.Type) Node
TypeNode returns the Node representing the type t.
Nodes is a slice of Node.
type Nodes []Node
func TakeInit(n Node) Nodes
func ToNodes[T Node](s []T) Nodes
ToNodes returns s as a slice of Nodes.
func (n *Nodes) Append(a ...Node)
Append appends entries to Nodes.
func (n Nodes) Copy() Nodes
Copy returns a copy of the content of the slice.
func (l Nodes) Format(s fmt.State, verb rune)
Format implements formatting for a Nodes. The valid formats are:
%v Go syntax, semicolon-separated %.v Go syntax, comma-separated %+v Debug syntax, as in DumpList.
func (n *Nodes) Prepend(a ...Node)
Prepend prepends entries to Nodes. If a slice is passed in, this will take ownership of it.
func (n *Nodes) Take() []Node
Take clears n, returning its former contents.
type Op uint8
Node ops.
const ( OXXX Op = iota // names ONAME // var or func name // Unnamed arg or return value: f(int, string) (int, error) { etc } // Also used for a qualified package identifier that hasn't been resolved yet. ONONAME OTYPE // type name OLITERAL // literal ONIL // nil // expressions OADD // X + Y OSUB // X - Y OOR // X | Y OXOR // X ^ Y OADDSTR // +{List} (string addition, list elements are strings) OADDR // &X OANDAND // X && Y OAPPEND // append(Args); after walk, X may contain elem type descriptor OBYTES2STR // Type(X) (Type is string, X is a []byte) OBYTES2STRTMP // Type(X) (Type is string, X is a []byte, ephemeral) ORUNES2STR // Type(X) (Type is string, X is a []rune) OSTR2BYTES // Type(X) (Type is []byte, X is a string) OSTR2BYTESTMP // Type(X) (Type is []byte, X is a string, ephemeral) OSTR2RUNES // Type(X) (Type is []rune, X is a string) OSLICE2ARR // Type(X) (Type is [N]T, X is a []T) OSLICE2ARRPTR // Type(X) (Type is *[N]T, X is a []T) // X = Y or (if Def=true) X := Y // If Def, then Init includes a DCL node for X. OAS // Lhs = Rhs (x, y, z = a, b, c) or (if Def=true) Lhs := Rhs // If Def, then Init includes DCL nodes for Lhs OAS2 OAS2DOTTYPE // Lhs = Rhs (x, ok = I.(int)) OAS2FUNC // Lhs = Rhs (x, y = f()) OAS2MAPR // Lhs = Rhs (x, ok = m["foo"]) OAS2RECV // Lhs = Rhs (x, ok = <-c) OASOP // X AsOp= Y (x += y) OCALL // X(Args) (function call, method call or type conversion) // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure. // Prior to walk, they are: X(Args), where Args is all regular arguments. // After walk, if any argument whose evaluation might requires temporary variable, // that temporary variable will be pushed to Init, Args will contain an updated // set of arguments. OCALLFUNC // X(Args) (function call f(args)) OCALLMETH // X(Args) (direct method call x.Method(args)) OCALLINTER // X(Args) (interface method call x.Method(args)) OCAP // cap(X) OCLEAR // clear(X) OCLOSE // close(X) OCLOSURE // func Type { Func.Closure.Body } (func literal) OCOMPLIT // Type{List} (composite literal, not yet lowered to specific form) OMAPLIT // Type{List} (composite literal, Type is map) OSTRUCTLIT // Type{List} (composite literal, Type is struct) OARRAYLIT // Type{List} (composite literal, Type is array) OSLICELIT // Type{List} (composite literal, Type is slice), Len is slice length. OPTRLIT // &X (X is composite literal) OCONV // Type(X) (type conversion) OCONVIFACE // Type(X) (type conversion, to interface) OCONVNOP // Type(X) (type conversion, no effect) OCOPY // copy(X, Y) ODCL // var X (declares X of type X.Type) // Used during parsing but don't last. ODCLFUNC // func f() or func (r) f() ODELETE // delete(Args) ODOT // X.Sel (X is of struct type) ODOTPTR // X.Sel (X is of pointer to struct type) ODOTMETH // X.Sel (X is non-interface, Sel is method name) ODOTINTER // X.Sel (X is interface, Sel is method name) OXDOT // X.Sel (before rewrite to one of the preceding) ODOTTYPE // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved); after walk, Itab contains address of interface type descriptor and Itab.X contains address of concrete type descriptor ODOTTYPE2 // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, Itab contains address of interface type descriptor OEQ // X == Y ONE // X != Y OLT // X < Y OLE // X <= Y OGE // X >= Y OGT // X > Y ODEREF // *X OINDEX // X[Index] (index of array or slice) OINDEXMAP // X[Index] (index of map) OKEY // Key:Value (key:value in struct/array/map literal) OSTRUCTKEY // Field:Value (key:value in struct literal, after type checking) OLEN // len(X) OMAKE // make(Args) (before type checking converts to one of the following) OMAKECHAN // make(Type[, Len]) (type is chan) OMAKEMAP // make(Type[, Len]) (type is map) OMAKESLICE // make(Type[, Len[, Cap]]) (type is slice) OMAKESLICECOPY // makeslicecopy(Type, Len, Cap) (type is slice; Len is length and Cap is the copied from slice) // OMAKESLICECOPY is created by the order pass and corresponds to: // s = make(Type, Len); copy(s, Cap) // // Bounded can be set on the node when Len == len(Cap) is known at compile time. // // This node is created so the walk pass can optimize this pattern which would // otherwise be hard to detect after the order pass. OMUL // X * Y ODIV // X / Y OMOD // X % Y OLSH // X << Y ORSH // X >> Y OAND // X & Y OANDNOT // X &^ Y ONEW // new(X); corresponds to calls to new in source code ONOT // !X OBITNOT // ^X OPLUS // +X ONEG // -X OOROR // X || Y OPANIC // panic(X) OPRINT // print(List) OPRINTLN // println(List) OPAREN // (X) OSEND // Chan <- Value OSLICE // X[Low : High] (X is untypechecked or slice) OSLICEARR // X[Low : High] (X is pointer to array) OSLICESTR // X[Low : High] (X is string) OSLICE3 // X[Low : High : Max] (X is untypedchecked or slice) OSLICE3ARR // X[Low : High : Max] (X is pointer to array) OSLICEHEADER // sliceheader{Ptr, Len, Cap} (Ptr is unsafe.Pointer, Len is length, Cap is capacity) OSTRINGHEADER // stringheader{Ptr, Len} (Ptr is unsafe.Pointer, Len is length) ORECOVER // recover() ORECOVERFP // recover(Args) w/ explicit FP argument ORECV // <-X ORUNESTR // Type(X) (Type is string, X is rune) OSELRECV2 // like OAS2: Lhs = Rhs where len(Lhs)=2, len(Rhs)=1, Rhs[0].Op = ORECV (appears as .Var of OCASE) OMIN // min(List) OMAX // max(List) OREAL // real(X) OIMAG // imag(X) OCOMPLEX // complex(X, Y) OUNSAFEADD // unsafe.Add(X, Y) OUNSAFESLICE // unsafe.Slice(X, Y) OUNSAFESLICEDATA // unsafe.SliceData(X) OUNSAFESTRING // unsafe.String(X, Y) OUNSAFESTRINGDATA // unsafe.StringData(X) OMETHEXPR // X(Args) (method expression T.Method(args), first argument is the method receiver) OMETHVALUE // X.Sel (method expression t.Method, not called) // statements OBLOCK // { List } (block of code) OBREAK // break [Label] // OCASE: case List: Body (List==nil means default) // For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL // for nil) or an ODYNAMICTYPE indicating a runtime type for generics. // If a type-switch variable is specified, Var is an // ONAME for the version of the type-switch variable with the specified // type. OCASE OCONTINUE // continue [Label] ODEFER // defer Call OFALL // fallthrough OFOR // for Init; Cond; Post { Body } OGOTO // goto Label OIF // if Init; Cond { Then } else { Else } OLABEL // Label: OGO // go Call ORANGE // for Key, Value = range X { Body } ORETURN // return Results OSELECT // select { Cases } OSWITCH // switch Init; Expr { Cases } // OTYPESW: X := Y.(type) (appears as .Tag of OSWITCH) // X is nil if there is no type-switch variable OTYPESW // misc // intermediate representation of an inlined call. Uses Init (assignments // for the captured variables, parameters, retvars, & INLMARK op), // Body (body of the inlined function), and ReturnVars (list of // return values) OINLCALL // intermediary representation of an inlined call. OMAKEFACE // construct an interface value from rtype/itab and data pointers OITAB // rtype/itab pointer of an interface value OIDATA // data pointer of an interface value OSPTR // base pointer of a slice or string. Bounded==1 means known non-nil. OCFUNC // reference to c function pointer (not go func value) OCHECKNIL // emit code to ensure pointer/interface not nil ORESULT // result of a function call; Xoffset is stack offset OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree. OLINKSYMOFFSET // offset within a name OJUMPTABLE // A jump table structure for implementing dense expression switches OINTERFACESWITCH // A type switch with interface cases // opcodes for generics ODYNAMICDOTTYPE // x = i.(T) where T is a type parameter (or derived from a type parameter) ODYNAMICDOTTYPE2 // x, ok = i.(T) where T is a type parameter (or derived from a type parameter) ODYNAMICTYPE // a type node for type switches (represents a dynamic target type for a type switch) // arch-specific opcodes OTAILCALL // tail call to another function OGETG // runtime.getg() (read g pointer) OGETCALLERPC // runtime.getcallerpc() (continuation PC in caller frame) OGETCALLERSP // runtime.getcallersp() (stack pointer in caller frame) OEND )
func (o Op) Format(s fmt.State, verb rune)
Format implements formatting for an Op. The valid formats are:
%v Go syntax ("+", "<-", "print") %+v Debug syntax ("ADD", "RECV", "PRINT")
func (o Op) GoString() string
GoString returns the Go syntax for the Op, or else its name.
func (op Op) IsCmp() bool
IsCmp reports whether op is a comparison operation (==, !=, <, <=, >, or >=).
func (o Op) IsSlice3() bool
IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR). o must be a slicing op.
func (i Op) String() string
A Package holds information about the package being compiled.
type Package struct { // Imports, listed in source order. // See golang.org/issue/31636. Imports []*types.Pkg // Init functions, listed in source order. Inits []*Func // Funcs contains all (instantiated) functions, methods, and // function literals to be compiled. Funcs []*Func // Externs holds constants, (non-generic) types, and variables // declared at package scope. Externs []*Name // AsmHdrDecls holds declared constants and struct types that should // be included in -asmhdr output. It's only populated when -asmhdr // is set. AsmHdrDecls []*Name // Cgo directives. CgoPragmas [][]string // Variables with //go:embed lines. Embeds []*Name // PluginExports holds exported functions and variables that are // accessible through the package plugin API. It's only populated // for -buildmode=plugin (i.e., compiling package main and -dynlink // is set). PluginExports []*Name }
A ParenExpr is a parenthesized expression (X). It may end up being a value or a type.
type ParenExpr struct { X Node // contains filtered or unexported fields }
func NewParenExpr(pos src.XPos, x Node) *ParenExpr
func (n *ParenExpr) Bounded() bool
func (n *ParenExpr) Format(s fmt.State, verb rune)
func (n *ParenExpr) Implicit() bool
func (n *ParenExpr) Init() Nodes
func (n *ParenExpr) MarkNonNil()
func (n *ParenExpr) NonNil() bool
func (n *ParenExpr) PtrInit() *Nodes
func (n *ParenExpr) SetBounded(b bool)
func (n *ParenExpr) SetImplicit(b bool)
func (n *ParenExpr) SetInit(x Nodes)
func (n *ParenExpr) SetTransient(b bool)
func (n *ParenExpr) SetType(x *types.Type)
func (n *ParenExpr) Transient() bool
func (n *ParenExpr) Type() *types.Type
type PragmaFlag uint16
const ( // Func pragmas. Nointerface PragmaFlag = 1 << iota Noescape // func parameters don't escape Norace // func must not have race detector annotations Nosplit // func should not execute on separate stack Noinline // func should not be inlined NoCheckPtr // func should not be instrumented by checkptr CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all UintptrKeepAlive // pointers converted to uintptr must be kept alive UintptrEscapes // pointers converted to uintptr escape // Runtime-only func pragmas. // See ../../../../runtime/HACKING.md for detailed descriptions. Systemstack // func must run on system stack Nowritebarrier // emit compiler error instead of write barrier Nowritebarrierrec // error on write barrier in this or recursive callees Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees // Go command pragmas GoBuildPragma RegisterParams // TODO(register args) remove after register abi is working )
A RangeStmt is a range loop: for Key, Value = range X { Body }
type RangeStmt struct { Label *types.Sym Def bool X Node RType Node `mknode:"-"` // see reflectdata/helpers.go Key Node Value Node Body Nodes DistinctVars bool Prealloc *Name // When desugaring the RangeStmt during walk, the assignments to Key // and Value may require OCONVIFACE operations. If so, these fields // will be copied to their respective ConvExpr fields. KeyTypeWord Node `mknode:"-"` KeySrcRType Node `mknode:"-"` ValueTypeWord Node `mknode:"-"` ValueSrcRType Node `mknode:"-"` // contains filtered or unexported fields }
func NewRangeStmt(pos src.XPos, key, value, x Node, body []Node, distinctVars bool) *RangeStmt
func (n *RangeStmt) Format(s fmt.State, verb rune)
func (n *RangeStmt) Init() Nodes
func (n *RangeStmt) PtrInit() *Nodes
func (n *RangeStmt) SetInit(x Nodes)
A ReassignOracle efficiently answers queries about whether local variables are reassigned. This helper works by looking for function params and short variable declarations (e.g. https://go.dev/ref/spec#Short_variable_declarations) that are neither address taken nor subsequently re-assigned. It is intended to operate much like "ir.StaticValue" and "ir.Reassigned", but in a way that does just a single walk of the containing function (as opposed to a new walk on every call).
type ReassignOracle struct {
// contains filtered or unexported fields
}
func (ro *ReassignOracle) Init(fn *Func)
Init initializes the oracle based on the IR in function fn, laying the groundwork for future calls to the StaticValue and Reassigned methods. If the fn's IR is subsequently modified, Init must be called again.
func (ro *ReassignOracle) Reassigned(n *Name) bool
Reassigned method has the same semantics as the ir package function of the same name; see comments on Reassigned for more info.
func (ro *ReassignOracle) StaticValue(n Node) Node
StaticValue method has the same semantics as the ir package function of the same name; see comments on StaticValue.
A ResultExpr represents a direct access to a result.
type ResultExpr struct { Index int64 // index of the result expr. // contains filtered or unexported fields }
func NewResultExpr(pos src.XPos, typ *types.Type, index int64) *ResultExpr
func (n *ResultExpr) Bounded() bool
func (n *ResultExpr) Format(s fmt.State, verb rune)
func (n *ResultExpr) Init() Nodes
func (n *ResultExpr) MarkNonNil()
func (n *ResultExpr) NonNil() bool
func (n *ResultExpr) PtrInit() *Nodes
func (n *ResultExpr) SetBounded(b bool)
func (n *ResultExpr) SetInit(x Nodes)
func (n *ResultExpr) SetTransient(b bool)
func (n *ResultExpr) SetType(x *types.Type)
func (n *ResultExpr) Transient() bool
func (n *ResultExpr) Type() *types.Type
A ReturnStmt is a return statement.
type ReturnStmt struct { Results Nodes // return list // contains filtered or unexported fields }
func NewReturnStmt(pos src.XPos, results []Node) *ReturnStmt
func (n *ReturnStmt) Format(s fmt.State, verb rune)
func (n *ReturnStmt) Init() Nodes
func (n *ReturnStmt) PtrInit() *Nodes
func (n *ReturnStmt) SetInit(x Nodes)
A ScopeID represents a lexical scope within a function.
type ScopeID int32
A SelectStmt is a block: { Cases }.
type SelectStmt struct { Label *types.Sym Cases []*CommClause // TODO(rsc): Instead of recording here, replace with a block? Compiled Nodes // compiled form, after walkSelect // contains filtered or unexported fields }
func NewSelectStmt(pos src.XPos, cases []*CommClause) *SelectStmt
func (n *SelectStmt) Format(s fmt.State, verb rune)
func (n *SelectStmt) Init() Nodes
func (n *SelectStmt) PtrInit() *Nodes
func (n *SelectStmt) SetInit(x Nodes)
A SelectorExpr is a selector expression X.Sel.
type SelectorExpr struct { X Node // Sel is the name of the field or method being selected, without (in the // case of methods) any preceding type specifier. If the field/method is // exported, than the Sym uses the local package regardless of the package // of the containing type. Sel *types.Sym // The actual selected field - may not be filled in until typechecking. Selection *types.Field Prealloc *Name // preallocated storage for OMETHVALUE, if any // contains filtered or unexported fields }
func NewSelectorExpr(pos src.XPos, op Op, x Node, sel *types.Sym) *SelectorExpr
func (n *SelectorExpr) Bounded() bool
func (n *SelectorExpr) Format(s fmt.State, verb rune)
func (n *SelectorExpr) FuncName() *Name
func (n *SelectorExpr) Implicit() bool
func (n *SelectorExpr) Init() Nodes
func (n *SelectorExpr) MarkNonNil()
func (n *SelectorExpr) NonNil() bool
func (n *SelectorExpr) Offset() int64
func (n *SelectorExpr) PtrInit() *Nodes
func (n *SelectorExpr) SetBounded(b bool)
func (n *SelectorExpr) SetImplicit(b bool)
func (n *SelectorExpr) SetInit(x Nodes)
func (n *SelectorExpr) SetOp(op Op)
func (n *SelectorExpr) SetTransient(b bool)
func (n *SelectorExpr) SetType(x *types.Type)
func (n *SelectorExpr) Sym() *types.Sym
func (n *SelectorExpr) Transient() bool
func (n *SelectorExpr) Type() *types.Type
A SendStmt is a send statement: X <- Y.
type SendStmt struct { Chan Node Value Node // contains filtered or unexported fields }
func NewSendStmt(pos src.XPos, ch, value Node) *SendStmt
func (n *SendStmt) Format(s fmt.State, verb rune)
func (n *SendStmt) Init() Nodes
func (n *SendStmt) PtrInit() *Nodes
func (n *SendStmt) SetInit(x Nodes)
A SliceExpr is a slice expression X[Low:High] or X[Low:High:Max].
type SliceExpr struct { X Node Low Node High Node Max Node // contains filtered or unexported fields }
func NewSliceExpr(pos src.XPos, op Op, x, low, high, max Node) *SliceExpr
func (n *SliceExpr) Bounded() bool
func (n *SliceExpr) Format(s fmt.State, verb rune)
func (n *SliceExpr) Init() Nodes
func (n *SliceExpr) MarkNonNil()
func (n *SliceExpr) NonNil() bool
func (n *SliceExpr) PtrInit() *Nodes
func (n *SliceExpr) SetBounded(b bool)
func (n *SliceExpr) SetInit(x Nodes)
func (n *SliceExpr) SetOp(op Op)
func (n *SliceExpr) SetTransient(b bool)
func (n *SliceExpr) SetType(x *types.Type)
func (n *SliceExpr) Transient() bool
func (n *SliceExpr) Type() *types.Type
A SliceHeader expression constructs a slice header from its parts.
type SliceHeaderExpr struct { Ptr Node Len Node Cap Node // contains filtered or unexported fields }
func NewSliceHeaderExpr(pos src.XPos, typ *types.Type, ptr, len, cap Node) *SliceHeaderExpr
func (n *SliceHeaderExpr) Bounded() bool
func (n *SliceHeaderExpr) Format(s fmt.State, verb rune)
func (n *SliceHeaderExpr) Init() Nodes
func (n *SliceHeaderExpr) MarkNonNil()
func (n *SliceHeaderExpr) NonNil() bool
func (n *SliceHeaderExpr) PtrInit() *Nodes
func (n *SliceHeaderExpr) SetBounded(b bool)
func (n *SliceHeaderExpr) SetInit(x Nodes)
func (n *SliceHeaderExpr) SetTransient(b bool)
func (n *SliceHeaderExpr) SetType(x *types.Type)
func (n *SliceHeaderExpr) Transient() bool
func (n *SliceHeaderExpr) Type() *types.Type
A StarExpr is a dereference expression *X. It may end up being a value or a type.
type StarExpr struct { X Node // contains filtered or unexported fields }
func NewStarExpr(pos src.XPos, x Node) *StarExpr
func (n *StarExpr) Bounded() bool
func (n *StarExpr) Format(s fmt.State, verb rune)
func (n *StarExpr) Implicit() bool
func (n *StarExpr) Init() Nodes
func (n *StarExpr) MarkNonNil()
func (n *StarExpr) NonNil() bool
func (n *StarExpr) PtrInit() *Nodes
func (n *StarExpr) SetBounded(b bool)
func (n *StarExpr) SetImplicit(b bool)
func (n *StarExpr) SetInit(x Nodes)
func (n *StarExpr) SetTransient(b bool)
func (n *StarExpr) SetType(x *types.Type)
func (n *StarExpr) Transient() bool
func (n *StarExpr) Type() *types.Type
A Stmt is a Node that can appear as a statement. This includes statement-like expressions such as f().
(It's possible it should include <-c, but that would require splitting ORECV out of UnaryExpr, which hasn't yet been necessary. Maybe instead we will introduce ExprStmt at some point.)
type Stmt interface { Node // contains filtered or unexported methods }
A StringHeaderExpr expression constructs a string header from its parts.
type StringHeaderExpr struct { Ptr Node Len Node // contains filtered or unexported fields }
func NewStringHeaderExpr(pos src.XPos, ptr, len Node) *StringHeaderExpr
func (n *StringHeaderExpr) Bounded() bool
func (n *StringHeaderExpr) Format(s fmt.State, verb rune)
func (n *StringHeaderExpr) Init() Nodes
func (n *StringHeaderExpr) MarkNonNil()
func (n *StringHeaderExpr) NonNil() bool
func (n *StringHeaderExpr) PtrInit() *Nodes
func (n *StringHeaderExpr) SetBounded(b bool)
func (n *StringHeaderExpr) SetInit(x Nodes)
func (n *StringHeaderExpr) SetTransient(b bool)
func (n *StringHeaderExpr) SetType(x *types.Type)
func (n *StringHeaderExpr) Transient() bool
func (n *StringHeaderExpr) Type() *types.Type
A StructKeyExpr is a Field: Value composite literal key.
type StructKeyExpr struct { Field *types.Field Value Node // contains filtered or unexported fields }
func NewStructKeyExpr(pos src.XPos, field *types.Field, value Node) *StructKeyExpr
func (n *StructKeyExpr) Bounded() bool
func (n *StructKeyExpr) Format(s fmt.State, verb rune)
func (n *StructKeyExpr) Init() Nodes
func (n *StructKeyExpr) MarkNonNil()
func (n *StructKeyExpr) NonNil() bool
func (n *StructKeyExpr) PtrInit() *Nodes
func (n *StructKeyExpr) SetBounded(b bool)
func (n *StructKeyExpr) SetInit(x Nodes)
func (n *StructKeyExpr) SetTransient(b bool)
func (n *StructKeyExpr) SetType(x *types.Type)
func (n *StructKeyExpr) Sym() *types.Sym
func (n *StructKeyExpr) Transient() bool
func (n *StructKeyExpr) Type() *types.Type
A SwitchStmt is a switch statement: switch Init; Tag { Cases }.
type SwitchStmt struct { Tag Node Cases []*CaseClause Label *types.Sym // TODO(rsc): Instead of recording here, replace with a block? Compiled Nodes // compiled form, after walkSwitch // contains filtered or unexported fields }
func NewSwitchStmt(pos src.XPos, tag Node, cases []*CaseClause) *SwitchStmt
func (n *SwitchStmt) Format(s fmt.State, verb rune)
func (n *SwitchStmt) Init() Nodes
func (n *SwitchStmt) PtrInit() *Nodes
func (n *SwitchStmt) SetInit(x Nodes)
type SymAndPos struct { Sym *obj.LSym // LSym of callee Pos src.XPos // line of call }
A TailCallStmt is a tail call statement, which is used for back-end code generation to jump directly to another function entirely.
type TailCallStmt struct { Call *CallExpr // the underlying call // contains filtered or unexported fields }
func NewTailCallStmt(pos src.XPos, call *CallExpr) *TailCallStmt
func (n *TailCallStmt) Format(s fmt.State, verb rune)
func (n *TailCallStmt) Init() Nodes
func (n *TailCallStmt) PtrInit() *Nodes
func (n *TailCallStmt) SetInit(x Nodes)
A TypeAssertionExpr is a selector expression X.(Type). Before type-checking, the type is Ntype.
type TypeAssertExpr struct { X Node // Runtime type information provided by walkDotType for // assertions from non-empty interface to concrete type. ITab Node `mknode:"-"` // *runtime.itab for Type implementing X's type // An internal/abi.TypeAssert descriptor to pass to the runtime. Descriptor *obj.LSym // contains filtered or unexported fields }
func NewTypeAssertExpr(pos src.XPos, x Node, typ *types.Type) *TypeAssertExpr
func (n *TypeAssertExpr) Bounded() bool
func (n *TypeAssertExpr) Format(s fmt.State, verb rune)
func (n *TypeAssertExpr) Init() Nodes
func (n *TypeAssertExpr) MarkNonNil()
func (n *TypeAssertExpr) NonNil() bool
func (n *TypeAssertExpr) PtrInit() *Nodes
func (n *TypeAssertExpr) SetBounded(b bool)
func (n *TypeAssertExpr) SetInit(x Nodes)
func (n *TypeAssertExpr) SetOp(op Op)
func (n *TypeAssertExpr) SetTransient(b bool)
func (n *TypeAssertExpr) SetType(x *types.Type)
func (n *TypeAssertExpr) Transient() bool
func (n *TypeAssertExpr) Type() *types.Type
A TypeSwitchGuard is the [Name :=] X.(type) in a type switch.
type TypeSwitchGuard struct { Tag *Ident X Node Used bool // contains filtered or unexported fields }
func NewTypeSwitchGuard(pos src.XPos, tag *Ident, x Node) *TypeSwitchGuard
func (n *TypeSwitchGuard) Esc() uint16
func (n *TypeSwitchGuard) Format(s fmt.State, verb rune)
func (n *TypeSwitchGuard) Init() Nodes
func (n *TypeSwitchGuard) MarkNonNil()
func (n *TypeSwitchGuard) Name() *Name
func (n *TypeSwitchGuard) NonNil() bool
func (n *TypeSwitchGuard) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (n *TypeSwitchGuard) Pos() src.XPos
func (n *TypeSwitchGuard) SetEsc(x uint16)
func (n *TypeSwitchGuard) SetPos(x src.XPos)
func (n *TypeSwitchGuard) SetType(*types.Type)
func (n *TypeSwitchGuard) SetTypecheck(x uint8)
func (n *TypeSwitchGuard) SetVal(v constant.Value)
func (n *TypeSwitchGuard) SetWalked(x bool)
func (n *TypeSwitchGuard) Sym() *types.Sym
func (n *TypeSwitchGuard) Type() *types.Type
func (n *TypeSwitchGuard) Typecheck() uint8
func (n *TypeSwitchGuard) Val() constant.Value
func (n *TypeSwitchGuard) Walked() bool
A UnaryExpr is a unary expression Op X, or Op(X) for a builtin function that does not end up being a call.
type UnaryExpr struct { X Node // contains filtered or unexported fields }
func NewUnaryExpr(pos src.XPos, op Op, x Node) *UnaryExpr
func (n *UnaryExpr) Bounded() bool
func (n *UnaryExpr) Format(s fmt.State, verb rune)
func (n *UnaryExpr) Init() Nodes
func (n *UnaryExpr) MarkNonNil()
func (n *UnaryExpr) NonNil() bool
func (n *UnaryExpr) PtrInit() *Nodes
func (n *UnaryExpr) SetBounded(b bool)
func (n *UnaryExpr) SetInit(x Nodes)
func (n *UnaryExpr) SetOp(op Op)
func (n *UnaryExpr) SetTransient(b bool)
func (n *UnaryExpr) SetType(x *types.Type)
func (n *UnaryExpr) Transient() bool
func (n *UnaryExpr) Type() *types.Type
WasmImport stores metadata associated with the //go:wasmimport pragma.
type WasmImport struct { Module string Name string }