Package slices
Package slices defines various functions useful with slices of any type.
- func All[Slice ~[]E, E any](s Slice) iter.Seq2[int, E]
- func AppendSeq[Slice ~[]E, E any](s Slice, seq iter.Seq[E]) Slice
- func Backward[Slice ~[]E, E any](s Slice) iter.Seq2[int, E]
- func BinarySearch[S ~[]E, E cmp.Ordered](x S, target E) (int, bool)
- func BinarySearchFunc[S ~[]E, E, T any](x S, target T, cmp func(E, T) int) (int, bool)
- func Chunk[Slice ~[]E, E any](s Slice, n int) iter.Seq[Slice]
- func Clip[S ~[]E, E any](s S) S
- func Clone[S ~[]E, E any](s S) S
- func Collect[E any](seq iter.Seq[E]) []E
- func Compact[S ~[]E, E comparable](s S) S
- func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S
- func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int
- func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int
- func Concat[S ~[]E, E any](slices ...S) S
- func Contains[S ~[]E, E comparable](s S, v E) bool
- func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool
- func Delete[S ~[]E, E any](s S, i, j int) S
- func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S
- func Equal[S ~[]E, E comparable](s1, s2 S) bool
- func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool
- func Grow[S ~[]E, E any](s S, n int) S
- func Index[S ~[]E, E comparable](s S, v E) int
- func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int
- func Insert[S ~[]E, E any](s S, i int, v ...E) S
- func IsSorted[S ~[]E, E cmp.Ordered](x S) bool
- func IsSortedFunc[S ~[]E, E any](x S, cmp func(a, b E) int) bool
- func Max[S ~[]E, E cmp.Ordered](x S) E
- func MaxFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E
- func Min[S ~[]E, E cmp.Ordered](x S) E
- func MinFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E
- func Repeat[S ~[]E, E any](x S, count int) S
- func Replace[S ~[]E, E any](s S, i, j int, v ...E) S
- func Reverse[S ~[]E, E any](s S)
- func Sort[S ~[]E, E cmp.Ordered](x S)
- func SortFunc[S ~[]E, E any](x S, cmp func(a, b E) int)
- func SortStableFunc[S ~[]E, E any](x S, cmp func(a, b E) int)
- func Sorted[E cmp.Ordered](seq iter.Seq[E]) []E
- func SortedFunc[E any](seq iter.Seq[E], cmp func(E, E) int) []E
- func SortedStableFunc[E any](seq iter.Seq[E], cmp func(E, E) int) []E
- func Values[Slice ~[]E, E any](s Slice) iter.Seq[E]
Package files
iter.go
slices.go
sort.go
zsortanyfunc.go
zsortordered.go
func All
¶
1.23
func All[Slice ~[]E, E any](s Slice) iter.Seq2[int, E]
All returns an iterator over index-value pairs in the slice
in the usual order.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
for i, v := range slices.All(names) {
fmt.Println(i, ":", v)
}
Output:
0 : Alice
1 : Bob
2 : Vera
func AppendSeq[Slice ~[]E, E any](s Slice, seq iter.Seq[E]) Slice
AppendSeq appends the values from seq to the slice and
returns the extended slice.
▾ Example
Code:
seq := func(yield func(int) bool) {
for i := 0; i < 10; i += 2 {
if !yield(i) {
return
}
}
}
s := slices.AppendSeq([]int{1, 2}, seq)
fmt.Println(s)
Output:
[1 2 0 2 4 6 8]
func Backward[Slice ~[]E, E any](s Slice) iter.Seq2[int, E]
Backward returns an iterator over index-value pairs in the slice,
traversing it backward with descending indices.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
for i, v := range slices.Backward(names) {
fmt.Println(i, ":", v)
}
Output:
2 : Vera
1 : Bob
0 : Alice
func BinarySearch[S ~[]E, E cmp.Ordered](x S, target E) (int, bool)
BinarySearch searches for target in a sorted slice and returns the earliest
position where target is found, or the position where target would appear
in the sort order; it also returns a bool saying whether the target is
really found in the slice. The slice must be sorted in increasing order.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
n, found := slices.BinarySearch(names, "Vera")
fmt.Println("Vera:", n, found)
n, found = slices.BinarySearch(names, "Bill")
fmt.Println("Bill:", n, found)
Output:
Vera: 2 true
Bill: 1 false
func BinarySearchFunc[S ~[]E, E, T any](x S, target T, cmp func(E, T) int) (int, bool)
BinarySearchFunc works like BinarySearch, but uses a custom comparison
function. The slice must be sorted in increasing order, where "increasing"
is defined by cmp. cmp should return 0 if the slice element matches
the target, a negative number if the slice element precedes the target,
or a positive number if the slice element follows the target.
cmp must implement the same ordering as the slice, such that if
cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
▾ Example
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Alice", 55},
{"Bob", 24},
{"Gopher", 13},
}
n, found := slices.BinarySearchFunc(people, Person{"Bob", 0}, func(a, b Person) int {
return strings.Compare(a.Name, b.Name)
})
fmt.Println("Bob:", n, found)
Output:
Bob: 1 true
func Chunk[Slice ~[]E, E any](s Slice, n int) iter.Seq[Slice]
Chunk returns an iterator over consecutive sub-slices of up to n elements of s.
All but the last sub-slice will have size n.
All sub-slices are clipped to have no capacity beyond the length.
If s is empty, the sequence is empty: there is no empty slice in the sequence.
Chunk panics if n is less than 1.
▾ Example
Code:
type Person struct {
Name string
Age int
}
type People []Person
people := People{
{"Gopher", 13},
{"Alice", 20},
{"Bob", 5},
{"Vera", 24},
{"Zac", 15},
}
for c := range slices.Chunk(people, 2) {
fmt.Println(c)
}
Output:
[{Gopher 13} {Alice 20}]
[{Bob 5} {Vera 24}]
[{Zac 15}]
func Clip
¶
1.21
func Clip[S ~[]E, E any](s S) S
Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
▾ Example
Code:
a := [...]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
s := a[:4:10]
clip := slices.Clip(s)
fmt.Println(cap(s))
fmt.Println(clip)
fmt.Println(len(clip))
fmt.Println(cap(clip))
Output:
10
[0 1 2 3]
4
4
func Clone[S ~[]E, E any](s S) S
Clone returns a copy of the slice.
The elements are copied using assignment, so this is a shallow clone.
The result may have additional unused capacity.
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
clone := slices.Clone(numbers)
fmt.Println(clone)
clone[2] = 10
fmt.Println(numbers)
fmt.Println(clone)
Output:
[0 42 -10 8]
[0 42 -10 8]
[0 42 10 8]
func Collect[E any](seq iter.Seq[E]) []E
Collect collects values from seq into a new slice and returns it.
▾ Example
Code:
seq := func(yield func(int) bool) {
for i := 0; i < 10; i += 2 {
if !yield(i) {
return
}
}
}
s := slices.Collect(seq)
fmt.Println(s)
Output:
[0 2 4 6 8]
func Compact[S ~[]E, E comparable](s S) S
Compact replaces consecutive runs of equal elements with a single copy.
This is like the uniq command found on Unix.
Compact modifies the contents of the slice s and returns the modified slice,
which may have a smaller length.
Compact zeroes the elements between the new length and the original length.
▾ Example
Code:
seq := []int{0, 1, 1, 2, 3, 5, 8}
seq = slices.Compact(seq)
fmt.Println(seq)
Output:
[0 1 2 3 5 8]
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S
CompactFunc is like Compact but uses an equality function to compare elements.
For runs of elements that compare equal, CompactFunc keeps the first one.
CompactFunc zeroes the elements between the new length and the original length.
▾ Example
Code:
names := []string{"bob", "Bob", "alice", "Vera", "VERA"}
names = slices.CompactFunc(names, strings.EqualFold)
fmt.Println(names)
Output:
[bob alice Vera]
func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int
Compare compares the elements of s1 and s2, using cmp.Compare on each pair
of elements. The elements are compared sequentially, starting at index 0,
until one element is not equal to the other.
The result of comparing the first non-matching elements is returned.
If both slices are equal until one of them ends, the shorter slice is
considered less than the longer one.
The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
fmt.Println("Equal:", slices.Compare(names, []string{"Alice", "Bob", "Vera"}))
fmt.Println("V < X:", slices.Compare(names, []string{"Alice", "Bob", "Xena"}))
fmt.Println("V > C:", slices.Compare(names, []string{"Alice", "Bob", "Cat"}))
fmt.Println("3 > 2:", slices.Compare(names, []string{"Alice", "Bob"}))
Output:
Equal: 0
V < X: -1
V > C: 1
3 > 2: 1
func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int
CompareFunc is like Compare but uses a custom comparison function on each
pair of elements.
The result is the first non-zero result of cmp; if cmp always
returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
and +1 if len(s1) > len(s2).
▾ Example
Code:
numbers := []int{0, 43, 8}
strings := []string{"0", "0", "8"}
result := slices.CompareFunc(numbers, strings, func(n int, s string) int {
sn, err := strconv.Atoi(s)
if err != nil {
return 1
}
return cmp.Compare(n, sn)
})
fmt.Println(result)
Output:
1
func Concat[S ~[]E, E any](slices ...S) S
Concat returns a new slice concatenating the passed in slices.
▾ Example
Code:
s1 := []int{0, 1, 2, 3}
s2 := []int{4, 5, 6}
concat := slices.Concat(s1, s2)
fmt.Println(concat)
Output:
[0 1 2 3 4 5 6]
func Contains[S ~[]E, E comparable](s S, v E) bool
Contains reports whether v is present in s.
▾ Example
Code:
numbers := []int{0, 1, 2, 3}
fmt.Println(slices.Contains(numbers, 2))
fmt.Println(slices.Contains(numbers, 4))
Output:
true
false
func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool
ContainsFunc reports whether at least one
element e of s satisfies f(e).
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
hasNegative := slices.ContainsFunc(numbers, func(n int) bool {
return n < 0
})
fmt.Println("Has a negative:", hasNegative)
hasOdd := slices.ContainsFunc(numbers, func(n int) bool {
return n%2 != 0
})
fmt.Println("Has an odd number:", hasOdd)
Output:
Has a negative: true
Has an odd number: false
func Delete[S ~[]E, E any](s S, i, j int) S
Delete removes the elements s[i:j] from s, returning the modified slice.
Delete panics if j > len(s) or s[i:j] is not a valid slice of s.
Delete is O(len(s)-i), so if many items must be deleted, it is better to
make a single call deleting them all together than to delete one at a time.
Delete zeroes the elements s[len(s)-(j-i):len(s)].
▾ Example
Code:
letters := []string{"a", "b", "c", "d", "e"}
letters = slices.Delete(letters, 1, 4)
fmt.Println(letters)
Output:
[a e]
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S
DeleteFunc removes any elements from s for which del returns true,
returning the modified slice.
DeleteFunc zeroes the elements between the new length and the original length.
▾ Example
Code:
seq := []int{0, 1, 1, 2, 3, 5, 8}
seq = slices.DeleteFunc(seq, func(n int) bool {
return n%2 != 0
})
fmt.Println(seq)
Output:
[0 2 8]
func Equal[S ~[]E, E comparable](s1, s2 S) bool
Equal reports whether two slices are equal: the same length and all
elements equal. If the lengths are different, Equal returns false.
Otherwise, the elements are compared in increasing index order, and the
comparison stops at the first unequal pair.
Empty and nil slices are considered equal.
Floating point NaNs are not considered equal.
▾ Example
Code:
numbers := []int{0, 42, 8}
fmt.Println(slices.Equal(numbers, []int{0, 42, 8}))
fmt.Println(slices.Equal(numbers, []int{10}))
Output:
true
false
func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool
EqualFunc reports whether two slices are equal using an equality
function on each pair of elements. If the lengths are different,
EqualFunc returns false. Otherwise, the elements are compared in
increasing index order, and the comparison stops at the first index
for which eq returns false.
▾ Example
Code:
numbers := []int{0, 42, 8}
strings := []string{"000", "42", "0o10"}
equal := slices.EqualFunc(numbers, strings, func(n int, s string) bool {
sn, err := strconv.ParseInt(s, 0, 64)
if err != nil {
return false
}
return n == int(sn)
})
fmt.Println(equal)
Output:
true
func Grow
¶
1.21
func Grow[S ~[]E, E any](s S, n int) S
Grow increases the slice's capacity, if necessary, to guarantee space for
another n elements. After Grow(n), at least n elements can be appended
to the slice without another allocation. If n is negative or too large to
allocate the memory, Grow panics.
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
grow := slices.Grow(numbers, 2)
fmt.Println(cap(numbers))
fmt.Println(grow)
fmt.Println(len(grow))
fmt.Println(cap(grow))
Output:
4
[0 42 -10 8]
4
8
func Index[S ~[]E, E comparable](s S, v E) int
Index returns the index of the first occurrence of v in s,
or -1 if not present.
▾ Example
Code:
numbers := []int{0, 42, 8}
fmt.Println(slices.Index(numbers, 8))
fmt.Println(slices.Index(numbers, 7))
Output:
2
-1
func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int
IndexFunc returns the first index i satisfying f(s[i]),
or -1 if none do.
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
i := slices.IndexFunc(numbers, func(n int) bool {
return n < 0
})
fmt.Println("First negative at index", i)
Output:
First negative at index 2
func Insert[S ~[]E, E any](s S, i int, v ...E) S
Insert inserts the values v... into s at index i,
returning the modified slice.
The elements at s[i:] are shifted up to make room.
In the returned slice r, r[i] == v[0],
and, if i < len(s), r[i+len(v)] == value originally at r[i].
Insert panics if i > len(s).
This function is O(len(s) + len(v)).
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
names = slices.Insert(names, 1, "Bill", "Billie")
names = slices.Insert(names, len(names), "Zac")
fmt.Println(names)
Output:
[Alice Bill Billie Bob Vera Zac]
func IsSorted[S ~[]E, E cmp.Ordered](x S) bool
IsSorted reports whether x is sorted in ascending order.
▾ Example
Code:
fmt.Println(slices.IsSorted([]string{"Alice", "Bob", "Vera"}))
fmt.Println(slices.IsSorted([]int{0, 2, 1}))
Output:
true
false
func IsSortedFunc[S ~[]E, E any](x S, cmp func(a, b E) int) bool
IsSortedFunc reports whether x is sorted in ascending order, with cmp as the
comparison function as defined by SortFunc.
▾ Example
Code:
names := []string{"alice", "Bob", "VERA"}
isSortedInsensitive := slices.IsSortedFunc(names, func(a, b string) int {
return strings.Compare(strings.ToLower(a), strings.ToLower(b))
})
fmt.Println(isSortedInsensitive)
fmt.Println(slices.IsSorted(names))
Output:
true
false
func Max
¶
1.21
func Max[S ~[]E, E cmp.Ordered](x S) E
Max returns the maximal value in x. It panics if x is empty.
For floating-point E, Max propagates NaNs (any NaN value in x
forces the output to be NaN).
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
fmt.Println(slices.Max(numbers))
Output:
42
func MaxFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E
MaxFunc returns the maximal value in x, using cmp to compare elements.
It panics if x is empty. If there is more than one maximal element
according to the cmp function, MaxFunc returns the first one.
▾ Example
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Gopher", 13},
{"Alice", 55},
{"Vera", 24},
{"Bob", 55},
}
firstOldest := slices.MaxFunc(people, func(a, b Person) int {
return cmp.Compare(a.Age, b.Age)
})
fmt.Println(firstOldest.Name)
Output:
Alice
func Min
¶
1.21
func Min[S ~[]E, E cmp.Ordered](x S) E
Min returns the minimal value in x. It panics if x is empty.
For floating-point numbers, Min propagates NaNs (any NaN value in x
forces the output to be NaN).
▾ Example
Code:
numbers := []int{0, 42, -10, 8}
fmt.Println(slices.Min(numbers))
Output:
-10
func MinFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E
MinFunc returns the minimal value in x, using cmp to compare elements.
It panics if x is empty. If there is more than one minimal element
according to the cmp function, MinFunc returns the first one.
▾ Example
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Gopher", 13},
{"Bob", 5},
{"Vera", 24},
{"Bill", 5},
}
firstYoungest := slices.MinFunc(people, func(a, b Person) int {
return cmp.Compare(a.Age, b.Age)
})
fmt.Println(firstYoungest.Name)
Output:
Bob
func Repeat[S ~[]E, E any](x S, count int) S
Repeat returns a new slice that repeats the provided slice the given number of times.
The result has length and capacity (len(x) * count).
The result is never nil.
Repeat panics if count is negative or if the result of (len(x) * count)
overflows.
▾ Example
Code:
numbers := []int{0, 1, 2, 3}
repeat := slices.Repeat(numbers, 2)
fmt.Println(repeat)
Output:
[0 1 2 3 0 1 2 3]
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S
Replace replaces the elements s[i:j] by the given v, and returns the
modified slice.
Replace panics if j > len(s) or s[i:j] is not a valid slice of s.
When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera", "Zac"}
names = slices.Replace(names, 1, 3, "Bill", "Billie", "Cat")
fmt.Println(names)
Output:
[Alice Bill Billie Cat Zac]
func Reverse[S ~[]E, E any](s S)
Reverse reverses the elements of the slice in place.
▾ Example
Code:
names := []string{"alice", "Bob", "VERA"}
slices.Reverse(names)
fmt.Println(names)
Output:
[VERA Bob alice]
func Sort
¶
1.21
func Sort[S ~[]E, E cmp.Ordered](x S)
Sort sorts a slice of any ordered type in ascending order.
When sorting floating-point numbers, NaNs are ordered before other values.
▾ Example
Code:
smallInts := []int8{0, 42, -10, 8}
slices.Sort(smallInts)
fmt.Println(smallInts)
Output:
[-10 0 8 42]
func SortFunc[S ~[]E, E any](x S, cmp func(a, b E) int)
SortFunc sorts the slice x in ascending order as determined by the cmp
function. This sort is not guaranteed to be stable.
cmp(a, b) should return a negative number when a < b, a positive number when
a > b and zero when a == b or a and b are incomparable in the sense of
a strict weak ordering.
SortFunc requires that cmp is a strict weak ordering.
See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
The function should return 0 for incomparable items.
▹ Example (CaseInsensitive)
▾ Example (CaseInsensitive)
Code:
names := []string{"Bob", "alice", "VERA"}
slices.SortFunc(names, func(a, b string) int {
return strings.Compare(strings.ToLower(a), strings.ToLower(b))
})
fmt.Println(names)
Output:
[alice Bob VERA]
▾ Example (MultiField)
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Gopher", 13},
{"Alice", 55},
{"Bob", 24},
{"Alice", 20},
}
slices.SortFunc(people, func(a, b Person) int {
if n := strings.Compare(a.Name, b.Name); n != 0 {
return n
}
return cmp.Compare(a.Age, b.Age)
})
fmt.Println(people)
Output:
[{Alice 20} {Alice 55} {Bob 24} {Gopher 13}]
func SortStableFunc[S ~[]E, E any](x S, cmp func(a, b E) int)
SortStableFunc sorts the slice x while keeping the original order of equal
elements, using cmp to compare elements in the same way as SortFunc.
▾ Example
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Gopher", 13},
{"Alice", 20},
{"Bob", 24},
{"Alice", 55},
}
slices.SortStableFunc(people, func(a, b Person) int {
return strings.Compare(a.Name, b.Name)
})
fmt.Println(people)
Output:
[{Alice 20} {Alice 55} {Bob 24} {Gopher 13}]
func Sorted[E cmp.Ordered](seq iter.Seq[E]) []E
Sorted collects values from seq into a new slice, sorts the slice,
and returns it.
▾ Example
Code:
seq := func(yield func(int) bool) {
flag := -1
for i := 0; i < 10; i += 2 {
flag = -flag
if !yield(i * flag) {
return
}
}
}
s := slices.Sorted(seq)
fmt.Println(s)
fmt.Println(slices.IsSorted(s))
Output:
[-6 -2 0 4 8]
true
func SortedFunc[E any](seq iter.Seq[E], cmp func(E, E) int) []E
SortedFunc collects values from seq into a new slice, sorts the slice
using the comparison function, and returns it.
▾ Example
Code:
seq := func(yield func(int) bool) {
flag := -1
for i := 0; i < 10; i += 2 {
flag = -flag
if !yield(i * flag) {
return
}
}
}
sortFunc := func(a, b int) int {
return cmp.Compare(b, a)
}
s := slices.SortedFunc(seq, sortFunc)
fmt.Println(s)
Output:
[8 4 0 -2 -6]
func SortedStableFunc[E any](seq iter.Seq[E], cmp func(E, E) int) []E
SortedStableFunc collects values from seq into a new slice.
It then sorts the slice while keeping the original order of equal elements,
using the comparison function to compare elements.
It returns the new slice.
▾ Example
Code:
type Person struct {
Name string
Age int
}
people := []Person{
{"Gopher", 13},
{"Alice", 20},
{"Bob", 5},
{"Vera", 24},
{"Zac", 20},
}
sortFunc := func(x, y Person) int {
return cmp.Compare(x.Age, y.Age)
}
s := slices.SortedStableFunc(slices.Values(people), sortFunc)
fmt.Println(s)
Output:
[{Bob 5} {Gopher 13} {Alice 20} {Zac 20} {Vera 24}]
func Values[Slice ~[]E, E any](s Slice) iter.Seq[E]
Values returns an iterator that yields the slice elements in order.
▾ Example
Code:
names := []string{"Alice", "Bob", "Vera"}
for v := range slices.Values(names) {
fmt.Println(v)
}
Output:
Alice
Bob
Vera