Package sort
Package sort provides primitives for sorting slices and user-defined collections.
▾ Example
Code:
package sort_test
import (
"fmt"
"sort"
)
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%s: %d", p.Name, p.Age)
}
type ByAge []Person
func (a ByAge) Len() int { return len(a) }
func (a ByAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }
func Example() {
people := []Person{
{"Bob", 31},
{"John", 42},
{"Michael", 17},
{"Jenny", 26},
}
fmt.Println(people)
sort.Sort(ByAge(people))
fmt.Println(people)
sort.Slice(people, func(i, j int) bool {
return people[i].Age > people[j].Age
})
fmt.Println(people)
}
▾ Example (SortKeys)
ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
Code:
package sort_test
import (
"fmt"
"sort"
)
type earthMass float64
type au float64
type Planet struct {
name string
mass earthMass
distance au
}
type By func(p1, p2 *Planet) bool
func (by By) Sort(planets []Planet) {
ps := &planetSorter{
planets: planets,
by: by,
}
sort.Sort(ps)
}
type planetSorter struct {
planets []Planet
by func(p1, p2 *Planet) bool
}
func (s *planetSorter) Len() int {
return len(s.planets)
}
func (s *planetSorter) Swap(i, j int) {
s.planets[i], s.planets[j] = s.planets[j], s.planets[i]
}
func (s *planetSorter) Less(i, j int) bool {
return s.by(&s.planets[i], &s.planets[j])
}
var planets = []Planet{
{"Mercury", 0.055, 0.4},
{"Venus", 0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", 0.107, 1.5},
}
func Example_sortKeys() {
name := func(p1, p2 *Planet) bool {
return p1.name < p2.name
}
mass := func(p1, p2 *Planet) bool {
return p1.mass < p2.mass
}
distance := func(p1, p2 *Planet) bool {
return p1.distance < p2.distance
}
decreasingDistance := func(p1, p2 *Planet) bool {
return distance(p2, p1)
}
By(name).Sort(planets)
fmt.Println("By name:", planets)
By(mass).Sort(planets)
fmt.Println("By mass:", planets)
By(distance).Sort(planets)
fmt.Println("By distance:", planets)
By(decreasingDistance).Sort(planets)
fmt.Println("By decreasing distance:", planets)
}
▹ Example (SortMultiKeys)
▾ Example (SortMultiKeys)
ExampleMultiKeys demonstrates a technique for sorting a struct type using different
sets of multiple fields in the comparison. We chain together "Less" functions, each of
which compares a single field.
Code:
package sort_test
import (
"fmt"
"sort"
)
type Change struct {
user string
language string
lines int
}
type lessFunc func(p1, p2 *Change) bool
type multiSorter struct {
changes []Change
less []lessFunc
}
func (ms *multiSorter) Sort(changes []Change) {
ms.changes = changes
sort.Sort(ms)
}
func OrderedBy(less ...lessFunc) *multiSorter {
return &multiSorter{
less: less,
}
}
func (ms *multiSorter) Len() int {
return len(ms.changes)
}
func (ms *multiSorter) Swap(i, j int) {
ms.changes[i], ms.changes[j] = ms.changes[j], ms.changes[i]
}
func (ms *multiSorter) Less(i, j int) bool {
p, q := &ms.changes[i], &ms.changes[j]
var k int
for k = 0; k < len(ms.less)-1; k++ {
less := ms.less[k]
switch {
case less(p, q):
return true
case less(q, p):
return false
}
}
return ms.less[k](p, q)
}
var changes = []Change{
{"gri", "Go", 100},
{"ken", "C", 150},
{"glenda", "Go", 200},
{"rsc", "Go", 200},
{"r", "Go", 100},
{"ken", "Go", 200},
{"dmr", "C", 100},
{"r", "C", 150},
{"gri", "Smalltalk", 80},
}
func Example_sortMultiKeys() {
user := func(c1, c2 *Change) bool {
return c1.user < c2.user
}
language := func(c1, c2 *Change) bool {
return c1.language < c2.language
}
increasingLines := func(c1, c2 *Change) bool {
return c1.lines < c2.lines
}
decreasingLines := func(c1, c2 *Change) bool {
return c1.lines > c2.lines
}
OrderedBy(user).Sort(changes)
fmt.Println("By user:", changes)
OrderedBy(user, increasingLines).Sort(changes)
fmt.Println("By user,<lines:", changes)
OrderedBy(user, decreasingLines).Sort(changes)
fmt.Println("By user,>lines:", changes)
OrderedBy(language, increasingLines).Sort(changes)
fmt.Println("By language,<lines:", changes)
OrderedBy(language, increasingLines, user).Sort(changes)
fmt.Println("By language,<lines,user:", changes)
}
▾ Example (SortWrapper)
Code:
package sort_test
import (
"fmt"
"sort"
)
type Grams int
func (g Grams) String() string { return fmt.Sprintf("%dg", int(g)) }
type Organ struct {
Name string
Weight Grams
}
type Organs []*Organ
func (s Organs) Len() int { return len(s) }
func (s Organs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
type ByName struct{ Organs }
func (s ByName) Less(i, j int) bool { return s.Organs[i].Name < s.Organs[j].Name }
type ByWeight struct{ Organs }
func (s ByWeight) Less(i, j int) bool { return s.Organs[i].Weight < s.Organs[j].Weight }
func Example_sortWrapper() {
s := []*Organ{
{"brain", 1340},
{"heart", 290},
{"liver", 1494},
{"pancreas", 131},
{"prostate", 62},
{"spleen", 162},
}
sort.Sort(ByWeight{s})
fmt.Println("Organs by weight:")
printOrgans(s)
sort.Sort(ByName{s})
fmt.Println("Organs by name:")
printOrgans(s)
}
func printOrgans(s []*Organ) {
for _, o := range s {
fmt.Printf("%-8s (%v)\n", o.Name, o.Weight)
}
}
- func Find(n int, cmp func(int) int) (i int, found bool)
- func Float64s(x []float64)
- func Float64sAreSorted(x []float64) bool
- func Ints(x []int)
- func IntsAreSorted(x []int) bool
- func IsSorted(data Interface) bool
- func Search(n int, f func(int) bool) int
- func SearchFloat64s(a []float64, x float64) int
- func SearchInts(a []int, x int) int
- func SearchStrings(a []string, x string) int
- func Slice(x any, less func(i, j int) bool)
- func SliceIsSorted(x any, less func(i, j int) bool) bool
- func SliceStable(x any, less func(i, j int) bool)
- func Sort(data Interface)
- func Stable(data Interface)
- func Strings(x []string)
- func StringsAreSorted(x []string) bool
- type Float64Slice
- func (x Float64Slice) Len() int
- func (x Float64Slice) Less(i, j int) bool
- func (p Float64Slice) Search(x float64) int
- func (x Float64Slice) Sort()
- func (x Float64Slice) Swap(i, j int)
- type IntSlice
- func (x IntSlice) Len() int
- func (x IntSlice) Less(i, j int) bool
- func (p IntSlice) Search(x int) int
- func (x IntSlice) Sort()
- func (x IntSlice) Swap(i, j int)
- type Interface
- func Reverse(data Interface) Interface
- type StringSlice
- func (x StringSlice) Len() int
- func (x StringSlice) Less(i, j int) bool
- func (p StringSlice) Search(x string) int
- func (x StringSlice) Sort()
- func (x StringSlice) Swap(i, j int)
Package files
search.go
slice.go
sort.go
sort_impl_go121.go
zsortfunc.go
zsortinterface.go
func Find
¶
1.19
func Find(n int, cmp func(int) int) (i int, found bool)
Find uses binary search to find and return the smallest index i in [0, n)
at which cmp(i) <= 0. If there is no such index i, Find returns i = n.
The found result is true if i < n and cmp(i) == 0.
Find calls cmp(i) only for i in the range [0, n).
To permit binary search, Find requires that cmp(i) > 0 for a leading
prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for
the final suffix of the range. (Each subrange could be empty.)
The usual way to establish this condition is to interpret cmp(i)
as a comparison of a desired target value t against entry i in an
underlying indexed data structure x, returning <0, 0, and >0
when t < x[i], t == x[i], and t > x[i], respectively.
For example, to look for a particular string in a sorted, random-access
list of strings:
i, found := sort.Find(x.Len(), func(i int) int {
return strings.Compare(target, x.At(i))
})
if found {
fmt.Printf("found %s at entry %d\n", target, i)
} else {
fmt.Printf("%s not found, would insert at %d", target, i)
}
▾ Example
This example demonstrates finding a string in a list sorted in ascending order.
Code:
a := []string{"apple", "banana", "lemon", "mango", "pear", "strawberry"}
for _, x := range []string{"banana", "orange"} {
i, found := sort.Find(len(a), func(i int) int {
return strings.Compare(x, a[i])
})
if found {
fmt.Printf("found %s at index %d\n", x, i)
} else {
fmt.Printf("%s not found, would insert at %d\n", x, i)
}
}
Output:
found banana at index 1
orange not found, would insert at 4
func Float64s(x []float64)
Float64s sorts a slice of float64s in increasing order.
Not-a-number (NaN) values are ordered before other values.
Note: as of Go 1.22, this function simply calls slices.Sort.
▾ Example
Code:
s := []float64{5.2, -1.3, 0.7, -3.8, 2.6}
sort.Float64s(s)
fmt.Println(s)
s = []float64{math.Inf(1), math.NaN(), math.Inf(-1), 0.0}
sort.Float64s(s)
fmt.Println(s)
Output:
[-3.8 -1.3 0.7 2.6 5.2]
[NaN -Inf 0 +Inf]
func Float64sAreSorted(x []float64) bool
Float64sAreSorted reports whether the slice x is sorted in increasing order,
with not-a-number (NaN) values before any other values.
Note: as of Go 1.22, this function simply calls slices.IsSorted.
▾ Example
Code:
s := []float64{0.7, 1.3, 2.6, 3.8, 5.2}
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 3.8, 2.6, 1.3, 0.7}
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 1.3, 0.7, 3.8, 2.6}
fmt.Println(sort.Float64sAreSorted(s))
Output:
true
false
false
func Ints(x []int)
Ints sorts a slice of ints in increasing order.
Note: as of Go 1.22, this function simply calls slices.Sort.
▾ Example
Code:
s := []int{5, 2, 6, 3, 1, 4}
sort.Ints(s)
fmt.Println(s)
Output:
[1 2 3 4 5 6]
func IntsAreSorted(x []int) bool
IntsAreSorted reports whether the slice x is sorted in increasing order.
Note: as of Go 1.22, this function simply calls slices.IsSorted.
▾ Example
Code:
s := []int{1, 2, 3, 4, 5, 6}
fmt.Println(sort.IntsAreSorted(s))
s = []int{6, 5, 4, 3, 2, 1}
fmt.Println(sort.IntsAreSorted(s))
s = []int{3, 2, 4, 1, 5}
fmt.Println(sort.IntsAreSorted(s))
Output:
true
false
false
func IsSorted(data Interface) bool
IsSorted reports whether data is sorted.
Note: in many situations, the newer slices.IsSortedFunc function is more
ergonomic and runs faster.
func Search(n int, f func(int) bool) int
Search uses binary search to find and return the smallest index i
in [0, n) at which f(i) is true, assuming that on the range [0, n),
f(i) == true implies f(i+1) == true. That is, Search requires that
f is false for some (possibly empty) prefix of the input range [0, n)
and then true for the (possibly empty) remainder; Search returns
the first true index. If there is no such index, Search returns n.
(Note that the "not found" return value is not -1 as in, for instance,
strings.Index.)
Search calls f(i) only for i in the range [0, n).
A common use of Search is to find the index i for a value x in
a sorted, indexable data structure such as an array or slice.
In this case, the argument f, typically a closure, captures the value
to be searched for, and how the data structure is indexed and
ordered.
For instance, given a slice data sorted in ascending order,
the call Search(len(data), func(i int) bool { return data[i] >= 23 })
returns the smallest index i such that data[i] >= 23. If the caller
wants to find whether 23 is in the slice, it must test data[i] == 23
separately.
Searching data sorted in descending order would use the <=
operator instead of the >= operator.
To complete the example above, the following code tries to find the value
x in an integer slice data sorted in ascending order:
x := 23
i := sort.Search(len(data), func(i int) bool { return data[i] >= x })
if i < len(data) && data[i] == x {
// x is present at data[i]
} else {
// x is not present in data,
// but i is the index where it would be inserted.
}
As a more whimsical example, this program guesses your number:
func GuessingGame() {
var s string
fmt.Printf("Pick an integer from 0 to 100.\n")
answer := sort.Search(100, func(i int) bool {
fmt.Printf("Is your number <= %d? ", i)
fmt.Scanf("%s", &s)
return s != "" && s[0] == 'y'
})
fmt.Printf("Your number is %d.\n", answer)
}
▾ Example
This example demonstrates searching a list sorted in ascending order.
Code:
a := []int{1, 3, 6, 10, 15, 21, 28, 36, 45, 55}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] >= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
Output:
found 6 at index 2 in [1 3 6 10 15 21 28 36 45 55]
▹ Example (DescendingOrder)
▾ Example (DescendingOrder)
This example demonstrates searching a list sorted in descending order.
The approach is the same as searching a list in ascending order,
but with the condition inverted.
Code:
a := []int{55, 45, 36, 28, 21, 15, 10, 6, 3, 1}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] <= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
Output:
found 6 at index 7 in [55 45 36 28 21 15 10 6 3 1]
func SearchFloat64s(a []float64, x float64) int
SearchFloat64s searches for x in a sorted slice of float64s and returns the index
as specified by Search. The return value is the index to insert x if x is not
present (it could be len(a)).
The slice must be sorted in ascending order.
▾ Example
This example demonstrates searching for float64 in a list sorted in ascending order.
Code:
a := []float64{1.0, 2.0, 3.3, 4.6, 6.1, 7.2, 8.0}
x := 2.0
i := sort.SearchFloat64s(a, x)
fmt.Printf("found %g at index %d in %v\n", x, i, a)
x = 0.5
i = sort.SearchFloat64s(a, x)
fmt.Printf("%g not found, can be inserted at index %d in %v\n", x, i, a)
Output:
found 2 at index 1 in [1 2 3.3 4.6 6.1 7.2 8]
0.5 not found, can be inserted at index 0 in [1 2 3.3 4.6 6.1 7.2 8]
func SearchInts(a []int, x int) int
SearchInts searches for x in a sorted slice of ints and returns the index
as specified by Search. The return value is the index to insert x if x is
not present (it could be len(a)).
The slice must be sorted in ascending order.
▾ Example
This example demonstrates searching for int in a list sorted in ascending order.
Code:
a := []int{1, 2, 3, 4, 6, 7, 8}
x := 2
i := sort.SearchInts(a, x)
fmt.Printf("found %d at index %d in %v\n", x, i, a)
x = 5
i = sort.SearchInts(a, x)
fmt.Printf("%d not found, can be inserted at index %d in %v\n", x, i, a)
Output:
found 2 at index 1 in [1 2 3 4 6 7 8]
5 not found, can be inserted at index 4 in [1 2 3 4 6 7 8]
func SearchStrings(a []string, x string) int
SearchStrings searches for x in a sorted slice of strings and returns the index
as specified by Search. The return value is the index to insert x if x is not
present (it could be len(a)).
The slice must be sorted in ascending order.
func Slice(x any, less func(i, j int) bool)
Slice sorts the slice x given the provided less function.
It panics if x is not a slice.
The sort is not guaranteed to be stable: equal elements
may be reversed from their original order.
For a stable sort, use SliceStable.
The less function must satisfy the same requirements as
the Interface type's Less method.
Note: in many situations, the newer slices.SortFunc function is more
ergonomic and runs faster.
▾ Example
Code:
people := []struct {
Name string
Age int
}{
{"Gopher", 7},
{"Alice", 55},
{"Vera", 24},
{"Bob", 75},
}
sort.Slice(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
sort.Slice(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age:", people)
Output:
By name: [{Alice 55} {Bob 75} {Gopher 7} {Vera 24}]
By age: [{Gopher 7} {Vera 24} {Alice 55} {Bob 75}]
func SliceIsSorted(x any, less func(i, j int) bool) bool
SliceIsSorted reports whether the slice x is sorted according to the provided less function.
It panics if x is not a slice.
Note: in many situations, the newer slices.IsSortedFunc function is more
ergonomic and runs faster.
func SliceStable(x any, less func(i, j int) bool)
SliceStable sorts the slice x using the provided less
function, keeping equal elements in their original order.
It panics if x is not a slice.
The less function must satisfy the same requirements as
the Interface type's Less method.
Note: in many situations, the newer slices.SortStableFunc function is more
ergonomic and runs faster.
▾ Example
Code:
people := []struct {
Name string
Age int
}{
{"Alice", 25},
{"Elizabeth", 75},
{"Alice", 75},
{"Bob", 75},
{"Alice", 75},
{"Bob", 25},
{"Colin", 25},
{"Elizabeth", 25},
}
sort.SliceStable(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
sort.SliceStable(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age,name:", people)
Output:
By name: [{Alice 25} {Alice 75} {Alice 75} {Bob 75} {Bob 25} {Colin 25} {Elizabeth 75} {Elizabeth 25}]
By age,name: [{Alice 25} {Bob 25} {Colin 25} {Elizabeth 25} {Alice 75} {Alice 75} {Bob 75} {Elizabeth 75}]
func Sort(data Interface)
Sort sorts data in ascending order as determined by the Less method.
It makes one call to data.Len to determine n and O(n*log(n)) calls to
data.Less and data.Swap. The sort is not guaranteed to be stable.
Note: in many situations, the newer slices.SortFunc function is more
ergonomic and runs faster.
func Stable(data Interface)
Stable sorts data in ascending order as determined by the Less method,
while keeping the original order of equal elements.
It makes one call to data.Len to determine n, O(n*log(n)) calls to
data.Less and O(n*log(n)*log(n)) calls to data.Swap.
Note: in many situations, the newer slices.SortStableFunc function is more
ergonomic and runs faster.
func Strings(x []string)
Strings sorts a slice of strings in increasing order.
Note: as of Go 1.22, this function simply calls slices.Sort.
▾ Example
Code:
s := []string{"Go", "Bravo", "Gopher", "Alpha", "Grin", "Delta"}
sort.Strings(s)
fmt.Println(s)
Output:
[Alpha Bravo Delta Go Gopher Grin]
func StringsAreSorted(x []string) bool
StringsAreSorted reports whether the slice x is sorted in increasing order.
Note: as of Go 1.22, this function simply calls slices.IsSorted.
Float64Slice implements Interface for a []float64, sorting in increasing order,
with not-a-number (NaN) values ordered before other values.
type Float64Slice []float64
func (Float64Slice) Len
¶
func (x Float64Slice) Len() int
func (Float64Slice) Less
¶
func (x Float64Slice) Less(i, j int) bool
Less reports whether x[i] should be ordered before x[j], as required by the sort Interface.
Note that floating-point comparison by itself is not a transitive relation: it does not
report a consistent ordering for not-a-number (NaN) values.
This implementation of Less places NaN values before any others, by using:
x[i] < x[j] || (math.IsNaN(x[i]) && !math.IsNaN(x[j]))
func (Float64Slice) Search
¶
func (p Float64Slice) Search(x float64) int
Search returns the result of applying SearchFloat64s to the receiver and x.
func (Float64Slice) Sort
¶
func (x Float64Slice) Sort()
Sort is a convenience method: x.Sort() calls Sort(x).
func (Float64Slice) Swap
¶
func (x Float64Slice) Swap(i, j int)
IntSlice attaches the methods of Interface to []int, sorting in increasing order.
type IntSlice []int
func (IntSlice) Len
¶
func (x IntSlice) Len() int
func (IntSlice) Less
¶
func (x IntSlice) Less(i, j int) bool
func (IntSlice) Search
¶
func (p IntSlice) Search(x int) int
Search returns the result of applying SearchInts to the receiver and x.
func (IntSlice) Sort
¶
func (x IntSlice) Sort()
Sort is a convenience method: x.Sort() calls Sort(x).
func (IntSlice) Swap
¶
func (x IntSlice) Swap(i, j int)
An implementation of Interface can be sorted by the routines in this package.
The methods refer to elements of the underlying collection by integer index.
type Interface interface {
Len() int
Less(i, j int) bool
Swap(i, j int)
}
func Reverse(data Interface) Interface
Reverse returns the reverse order for data.
▾ Example
Code:
s := []int{5, 2, 6, 3, 1, 4}
sort.Sort(sort.Reverse(sort.IntSlice(s)))
fmt.Println(s)
Output:
[6 5 4 3 2 1]
StringSlice attaches the methods of Interface to []string, sorting in increasing order.
type StringSlice []string
func (StringSlice) Len
¶
func (x StringSlice) Len() int
func (StringSlice) Less
¶
func (x StringSlice) Less(i, j int) bool
func (StringSlice) Search
¶
func (p StringSlice) Search(x string) int
Search returns the result of applying SearchStrings to the receiver and x.
func (StringSlice) Sort
¶
func (x StringSlice) Sort()
Sort is a convenience method: x.Sort() calls Sort(x).
func (StringSlice) Swap
¶
func (x StringSlice) Swap(i, j int)