...

Text file src/cmd/compile/internal/ssa/_gen/386.rules

Documentation: cmd/compile/internal/ssa/_gen

     1// Copyright 2016 The Go Authors. All rights reserved.
     2// Use of this source code is governed by a BSD-style
     3// license that can be found in the LICENSE file.
     4
     5// Lowering arithmetic
     6(Add(Ptr|32|16|8) ...) => (ADDL ...)
     7(Add(32|64)F ...) => (ADDS(S|D) ...)
     8(Add32carry ...) => (ADDLcarry ...)
     9(Add32withcarry ...) => (ADCL ...)
    10
    11(Sub(Ptr|32|16|8) ...) => (SUBL ...)
    12(Sub(32|64)F ...) => (SUBS(S|D) ...)
    13(Sub32carry ...) => (SUBLcarry ...)
    14(Sub32withcarry ...) => (SBBL ...)
    15
    16(Mul(32|16|8) ...) => (MULL ...)
    17(Mul(32|64)F ...) => (MULS(S|D) ...)
    18(Mul32uhilo ...) => (MULLQU ...)
    19
    20(Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y))
    21(Select1 (Mul32uover x y)) => (SETO (Select1 <types.TypeFlags> (MULLU x y)))
    22
    23(Avg32u ...) => (AVGLU ...)
    24
    25(Div(32|64)F ...) => (DIVS(S|D) ...)
    26(Div(32|32u|16|16u) ...) => (DIV(L|LU|W|WU) ...)
    27(Div8   x y) => (DIVW  (SignExt8to16 x) (SignExt8to16 y))
    28(Div8u  x y) => (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    29
    30(Hmul(32|32u) ...) => (HMUL(L|LU) ...)
    31
    32(Mod(32|32u|16|16u) ...) => (MOD(L|LU|W|WU) ...)
    33(Mod8   x y) => (MODW  (SignExt8to16 x) (SignExt8to16 y))
    34(Mod8u  x y) => (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    35
    36(And(32|16|8) ...) => (ANDL ...)
    37(Or(32|16|8) ...) => (ORL ...)
    38(Xor(32|16|8) ...) => (XORL ...)
    39
    40(Neg(32|16|8) ...) => (NEGL ...)
    41(Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))]))
    42(Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)]))
    43
    44(Com(32|16|8) ...) => (NOTL ...)
    45
    46// Lowering boolean ops
    47(AndB ...) => (ANDL ...)
    48(OrB ...) => (ORL ...)
    49(Not x) => (XORLconst [1] x)
    50
    51// Lowering pointer arithmetic
    52(OffPtr [off] ptr) => (ADDLconst [int32(off)] ptr)
    53
    54(Bswap32 ...) => (BSWAPL ...)
    55(Bswap16 x) => (ROLWconst [8] x)
    56
    57(Sqrt ...) => (SQRTSD ...)
    58(Sqrt32 ...) => (SQRTSS ...)
    59
    60(Ctz8 x) => (BSFL (ORLconst <typ.UInt32> [0x100] x))
    61(Ctz8NonZero ...) => (BSFL ...)
    62(Ctz16 x) => (BSFL (ORLconst <typ.UInt32> [0x10000] x))
    63(Ctz16NonZero ...) => (BSFL ...)
    64(Ctz32 ...) => (LoweredCtz32 ...)
    65(Ctz32NonZero ...) => (BSFL ...)
    66(Ctz64On32 ...) => (LoweredCtz64 ...)
    67
    68// Lowering extension
    69(SignExt8to16  ...) => (MOVBLSX ...)
    70(SignExt8to32  ...) => (MOVBLSX ...)
    71(SignExt16to32 ...) => (MOVWLSX ...)
    72
    73(ZeroExt8to16  ...) => (MOVBLZX ...)
    74(ZeroExt8to32  ...) => (MOVBLZX ...)
    75(ZeroExt16to32 ...) => (MOVWLZX ...)
    76
    77(Signmask x) => (SARLconst x [31])
    78(Zeromask <t> x) => (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1])))
    79(Slicemask <t> x) => (SARLconst (NEGL <t> x) [31])
    80
    81// Lowering truncation
    82// Because we ignore high parts of registers, truncates are just copies.
    83(Trunc16to8  ...) => (Copy ...)
    84(Trunc32to8  ...) => (Copy ...)
    85(Trunc32to16 ...) => (Copy ...)
    86
    87// Lowering float-int conversions
    88(Cvt32to32F ...) => (CVTSL2SS ...)
    89(Cvt32to64F ...) => (CVTSL2SD ...)
    90
    91(Cvt32Fto32 ...) => (CVTTSS2SL ...)
    92(Cvt64Fto32 ...) => (CVTTSD2SL ...)
    93
    94(Cvt32Fto64F ...) => (CVTSS2SD ...)
    95(Cvt64Fto32F ...) => (CVTSD2SS ...)
    96
    97(Round32F ...) => (Copy ...)
    98(Round64F ...) => (Copy ...)
    99
   100(CvtBoolToUint8 ...) => (Copy ...)
   101
   102// Lowering shifts
   103// Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
   104//   result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
   105(Lsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   106(Lsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   107(Lsh8x(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   108
   109(Lsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   110(Lsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   111(Lsh8x(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   112
   113(Rsh32Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   114(Rsh16Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [16])))
   115(Rsh8Ux(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [8])))
   116
   117(Rsh32Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRL <t> x y)
   118(Rsh16Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRW <t> x y)
   119(Rsh8Ux(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHRB <t> x y)
   120
   121// Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
   122// We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.
   123
   124(Rsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [32])))))
   125(Rsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [16])))))
   126(Rsh8x(32|16|8) <t> x y)  && !shiftIsBounded(v) => (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [8])))))
   127
   128(Rsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARL x y)
   129(Rsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARW x y)
   130(Rsh8x(32|16|8) <t> x y)  && shiftIsBounded(v) => (SARB x y)
   131
   132// constant shifts
   133// generic opt rewrites all constant shifts to shift by Const64
   134(Lsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SHLLconst x [int32(c)])
   135(Rsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SARLconst x [int32(c)])
   136(Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 => (SHRLconst x [int32(c)])
   137(Lsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SHLLconst x [int32(c)])
   138(Rsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SARWconst x [int16(c)])
   139(Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 => (SHRWconst x [int16(c)])
   140(Lsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SHLLconst x [int32(c)])
   141(Rsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SARBconst x [int8(c)])
   142(Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 => (SHRBconst x [int8(c)])
   143
   144// large constant shifts
   145(Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   146(Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   147(Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   148(Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   149(Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
   150(Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
   151
   152// large constant signed right shift, we leave the sign bit
   153(Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 => (SARLconst x [31])
   154(Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 => (SARWconst x [15])
   155(Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 => (SARBconst x [7])
   156
   157// rotates
   158(RotateLeft32 ...) => (ROLL ...)
   159(RotateLeft16 ...) => (ROLW ...)
   160(RotateLeft8  ...) => (ROLB ...)
   161// constant rotates
   162(ROLL x (MOVLconst [c])) => (ROLLconst [c&31] x)
   163(ROLW x (MOVLconst [c])) => (ROLWconst [int16(c&15)] x)
   164(ROLB x (MOVLconst [c])) => (ROLBconst [int8(c&7)] x)
   165
   166// Lowering comparisons
   167(Less32  x y) => (SETL (CMPL x y))
   168(Less16  x y) => (SETL (CMPW x y))
   169(Less8   x y) => (SETL (CMPB x y))
   170(Less32U x y) => (SETB (CMPL x y))
   171(Less16U x y) => (SETB (CMPW x y))
   172(Less8U  x y) => (SETB (CMPB x y))
   173// Use SETGF with reversed operands to dodge NaN case
   174(Less64F x y) => (SETGF (UCOMISD y x))
   175(Less32F x y) => (SETGF (UCOMISS y x))
   176
   177(Leq32  x y) => (SETLE (CMPL x y))
   178(Leq16  x y) => (SETLE (CMPW x y))
   179(Leq8   x y) => (SETLE (CMPB x y))
   180(Leq32U x y) => (SETBE (CMPL x y))
   181(Leq16U x y) => (SETBE (CMPW x y))
   182(Leq8U  x y) => (SETBE (CMPB x y))
   183// Use SETGEF with reversed operands to dodge NaN case
   184(Leq64F x y) => (SETGEF (UCOMISD y x))
   185(Leq32F x y) => (SETGEF (UCOMISS y x))
   186
   187(Eq32  x y) => (SETEQ (CMPL x y))
   188(Eq16  x y) => (SETEQ (CMPW x y))
   189(Eq8   x y) => (SETEQ (CMPB x y))
   190(EqB   x y) => (SETEQ (CMPB x y))
   191(EqPtr x y) => (SETEQ (CMPL x y))
   192(Eq64F x y) => (SETEQF (UCOMISD x y))
   193(Eq32F x y) => (SETEQF (UCOMISS x y))
   194
   195(Neq32  x y) => (SETNE (CMPL x y))
   196(Neq16  x y) => (SETNE (CMPW x y))
   197(Neq8   x y) => (SETNE (CMPB x y))
   198(NeqB   x y) => (SETNE (CMPB x y))
   199(NeqPtr x y) => (SETNE (CMPL x y))
   200(Neq64F x y) => (SETNEF (UCOMISD x y))
   201(Neq32F x y) => (SETNEF (UCOMISS x y))
   202
   203// Lowering loads
   204(Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) => (MOVLload ptr mem)
   205(Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem)
   206(Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem)
   207(Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem)
   208(Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem)
   209
   210// Lowering stores
   211(Store {t} ptr val mem) && t.Size() == 8 &&  t.IsFloat() => (MOVSDstore ptr val mem)
   212(Store {t} ptr val mem) && t.Size() == 4 &&  t.IsFloat() => (MOVSSstore ptr val mem)
   213(Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVLstore ptr val mem)
   214(Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem)
   215(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
   216
   217// Lowering moves
   218(Move [0] _ _ mem) => mem
   219(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
   220(Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
   221(Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem)
   222(Move [3] dst src mem) =>
   223	(MOVBstore [2] dst (MOVBload [2] src mem)
   224		(MOVWstore dst (MOVWload src mem) mem))
   225(Move [5] dst src mem) =>
   226	(MOVBstore [4] dst (MOVBload [4] src mem)
   227		(MOVLstore dst (MOVLload src mem) mem))
   228(Move [6] dst src mem) =>
   229	(MOVWstore [4] dst (MOVWload [4] src mem)
   230		(MOVLstore dst (MOVLload src mem) mem))
   231(Move [7] dst src mem) =>
   232	(MOVLstore [3] dst (MOVLload [3] src mem)
   233		(MOVLstore dst (MOVLload src mem) mem))
   234(Move [8] dst src mem) =>
   235	(MOVLstore [4] dst (MOVLload [4] src mem)
   236		(MOVLstore dst (MOVLload src mem) mem))
   237
   238// Adjust moves to be a multiple of 4 bytes.
   239(Move [s] dst src mem)
   240	&& s > 8 && s%4 != 0 =>
   241	(Move [s-s%4]
   242		(ADDLconst <dst.Type> dst [int32(s%4)])
   243		(ADDLconst <src.Type> src [int32(s%4)])
   244		(MOVLstore dst (MOVLload src mem) mem))
   245
   246// Medium copying uses a duff device.
   247(Move [s] dst src mem)
   248	&& s > 8 && s <= 4*128 && s%4 == 0
   249	&& !config.noDuffDevice && logLargeCopy(v, s) =>
   250	(DUFFCOPY [10*(128-s/4)] dst src mem)
   251// 10 and 128 are magic constants.  10 is the number of bytes to encode:
   252//	MOVL	(SI), CX
   253//	ADDL	$4, SI
   254//	MOVL	CX, (DI)
   255//	ADDL	$4, DI
   256// and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy.
   257
   258// Large copying uses REP MOVSL.
   259(Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s) =>
   260	(REPMOVSL dst src (MOVLconst [int32(s/4)]) mem)
   261
   262// Lowering Zero instructions
   263(Zero [0] _ mem) => mem
   264(Zero [1] destptr mem) => (MOVBstoreconst [0] destptr mem)
   265(Zero [2] destptr mem) => (MOVWstoreconst [0] destptr mem)
   266(Zero [4] destptr mem) => (MOVLstoreconst [0] destptr mem)
   267
   268(Zero [3] destptr mem) =>
   269	(MOVBstoreconst [makeValAndOff(0,2)] destptr
   270		(MOVWstoreconst [makeValAndOff(0,0)] destptr mem))
   271(Zero [5] destptr mem) =>
   272	(MOVBstoreconst [makeValAndOff(0,4)] destptr
   273		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   274(Zero [6] destptr mem) =>
   275	(MOVWstoreconst [makeValAndOff(0,4)] destptr
   276		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   277(Zero [7] destptr mem) =>
   278	(MOVLstoreconst [makeValAndOff(0,3)] destptr
   279		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   280
   281// Strip off any fractional word zeroing.
   282(Zero [s] destptr mem) && s%4 != 0 && s > 4 =>
   283	(Zero [s-s%4] (ADDLconst destptr [int32(s%4)])
   284		(MOVLstoreconst [0] destptr mem))
   285
   286// Zero small numbers of words directly.
   287(Zero [8] destptr mem) =>
   288	(MOVLstoreconst [makeValAndOff(0,4)] destptr
   289		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   290(Zero [12] destptr mem) =>
   291	(MOVLstoreconst [makeValAndOff(0,8)] destptr
   292		(MOVLstoreconst [makeValAndOff(0,4)] destptr
   293			(MOVLstoreconst [makeValAndOff(0,0)] destptr mem)))
   294(Zero [16] destptr mem) =>
   295	(MOVLstoreconst [makeValAndOff(0,12)] destptr
   296		(MOVLstoreconst [makeValAndOff(0,8)] destptr
   297			(MOVLstoreconst [makeValAndOff(0,4)] destptr
   298				(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))))
   299
   300// Medium zeroing uses a duff device.
   301(Zero [s] destptr mem)
   302  && s > 16 && s <= 4*128 && s%4 == 0
   303  && !config.noDuffDevice =>
   304	(DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem)
   305// 1 and 128 are magic constants.  1 is the number of bytes to encode STOSL.
   306// 128 is the number of STOSL instructions in duffzero.
   307// See src/runtime/duff_386.s:duffzero.
   308
   309// Large zeroing uses REP STOSQ.
   310(Zero [s] destptr mem)
   311  && (s > 4*128 || (config.noDuffDevice && s > 16))
   312  && s%4 == 0 =>
   313	(REPSTOSL destptr (MOVLconst [int32(s/4)]) (MOVLconst [0]) mem)
   314
   315
   316// Lowering constants
   317(Const8   [c]) => (MOVLconst [int32(c)])
   318(Const16  [c]) => (MOVLconst [int32(c)])
   319(Const32  ...) => (MOVLconst ...)
   320(Const(32|64)F ...) => (MOVS(S|D)const ...)
   321(ConstNil) => (MOVLconst [0])
   322(ConstBool [c]) => (MOVLconst [b2i32(c)])
   323
   324// Lowering calls
   325(StaticCall ...) => (CALLstatic ...)
   326(ClosureCall ...) => (CALLclosure ...)
   327(InterCall ...) => (CALLinter ...)
   328(TailCall ...) => (CALLtail ...)
   329
   330// Miscellaneous
   331(IsNonNil p) => (SETNE (TESTL p p))
   332(IsInBounds idx len) => (SETB (CMPL idx len))
   333(IsSliceInBounds idx len) => (SETBE (CMPL idx len))
   334(NilCheck ...) => (LoweredNilCheck ...)
   335(GetG ...) => (LoweredGetG ...)
   336(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
   337(GetCallerPC ...) => (LoweredGetCallerPC ...)
   338(GetCallerSP ...) => (LoweredGetCallerSP ...)
   339(Addr {sym} base) => (LEAL {sym} base)
   340(LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (LEAL {sym} (SPanchored base mem))
   341(LocalAddr <t> {sym} base _)  && !t.Elem().HasPointers() => (LEAL {sym} base)
   342
   343// block rewrites
   344(If (SETL  cmp) yes no) => (LT  cmp yes no)
   345(If (SETLE cmp) yes no) => (LE  cmp yes no)
   346(If (SETG  cmp) yes no) => (GT  cmp yes no)
   347(If (SETGE cmp) yes no) => (GE  cmp yes no)
   348(If (SETEQ cmp) yes no) => (EQ  cmp yes no)
   349(If (SETNE cmp) yes no) => (NE  cmp yes no)
   350(If (SETB  cmp) yes no) => (ULT cmp yes no)
   351(If (SETBE cmp) yes no) => (ULE cmp yes no)
   352(If (SETA  cmp) yes no) => (UGT cmp yes no)
   353(If (SETAE cmp) yes no) => (UGE cmp yes no)
   354(If (SETO  cmp) yes no) => (OS cmp yes no)
   355
   356// Special case for floating point - LF/LEF not generated
   357(If (SETGF  cmp) yes no) => (UGT  cmp yes no)
   358(If (SETGEF cmp) yes no) => (UGE  cmp yes no)
   359(If (SETEQF cmp) yes no) => (EQF  cmp yes no)
   360(If (SETNEF cmp) yes no) => (NEF  cmp yes no)
   361
   362(If cond yes no) => (NE (TESTB cond cond) yes no)
   363
   364// Write barrier.
   365(WB ...) => (LoweredWB ...)
   366
   367(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
   368(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
   369(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
   370
   371(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 => (LoweredPanicExtendA [kind] hi lo y mem)
   372(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 => (LoweredPanicExtendB [kind] hi lo y mem)
   373(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 => (LoweredPanicExtendC [kind] hi lo y mem)
   374
   375// ***************************
   376// Above: lowering rules
   377// Below: optimizations
   378// ***************************
   379// TODO: Should the optimizations be a separate pass?
   380
   381// Fold boolean tests into blocks
   382(NE (TESTB (SETL  cmp) (SETL  cmp)) yes no) => (LT  cmp yes no)
   383(NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE  cmp yes no)
   384(NE (TESTB (SETG  cmp) (SETG  cmp)) yes no) => (GT  cmp yes no)
   385(NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE  cmp yes no)
   386(NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ  cmp yes no)
   387(NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE  cmp yes no)
   388(NE (TESTB (SETB  cmp) (SETB  cmp)) yes no) => (ULT cmp yes no)
   389(NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no)
   390(NE (TESTB (SETA  cmp) (SETA  cmp)) yes no) => (UGT cmp yes no)
   391(NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no)
   392(NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no)
   393
   394// Special case for floating point - LF/LEF not generated
   395(NE (TESTB (SETGF  cmp) (SETGF  cmp)) yes no) => (UGT  cmp yes no)
   396(NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE  cmp yes no)
   397(NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF  cmp yes no)
   398(NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF  cmp yes no)
   399
   400// fold constants into instructions
   401(ADDL x (MOVLconst <t> [c])) && !t.IsPtr() => (ADDLconst [c] x)
   402(ADDLcarry x (MOVLconst [c])) => (ADDLconstcarry [c] x)
   403(ADCL x (MOVLconst [c]) f) => (ADCLconst [c] x f)
   404
   405(SUBL x (MOVLconst [c])) => (SUBLconst x [c])
   406(SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c]))
   407(SUBLcarry x (MOVLconst [c])) => (SUBLconstcarry [c] x)
   408(SBBL x (MOVLconst [c]) f) => (SBBLconst [c] x f)
   409
   410(MULL x (MOVLconst [c])) => (MULLconst [c] x)
   411(ANDL x (MOVLconst [c])) => (ANDLconst [c] x)
   412
   413(ANDLconst [c] (ANDLconst [d] x)) => (ANDLconst [c & d] x)
   414(XORLconst [c] (XORLconst [d] x)) => (XORLconst [c ^ d] x)
   415(MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x)
   416
   417(ORL x (MOVLconst [c])) => (ORLconst [c] x)
   418(XORL x (MOVLconst [c])) => (XORLconst [c] x)
   419
   420(SHLL x (MOVLconst [c])) => (SHLLconst [c&31] x)
   421(SHRL x (MOVLconst [c])) => (SHRLconst [c&31] x)
   422(SHRW x (MOVLconst [c])) && c&31 < 16 => (SHRWconst [int16(c&31)] x)
   423(SHRW _ (MOVLconst [c])) && c&31 >= 16 => (MOVLconst [0])
   424(SHRB x (MOVLconst [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x)
   425(SHRB _ (MOVLconst [c])) && c&31 >= 8 => (MOVLconst [0])
   426
   427(SARL x (MOVLconst [c])) => (SARLconst [c&31] x)
   428(SARW x (MOVLconst [c])) => (SARWconst [int16(min(int64(c&31),15))] x)
   429(SARB x (MOVLconst [c])) => (SARBconst [int8(min(int64(c&31),7))] x)
   430
   431(SARL x (ANDLconst [31] y)) => (SARL x y)
   432(SHLL x (ANDLconst [31] y)) => (SHLL x y)
   433(SHRL x (ANDLconst [31] y)) => (SHRL x y)
   434
   435// Constant shift simplifications
   436
   437(SHLLconst x [0]) => x
   438(SHRLconst x [0]) => x
   439(SARLconst x [0]) => x
   440
   441(SHRWconst x [0]) => x
   442(SARWconst x [0]) => x
   443
   444(SHRBconst x [0]) => x
   445(SARBconst x [0]) => x
   446
   447(ROLLconst [0] x) => x
   448(ROLWconst [0] x) => x
   449(ROLBconst [0] x) => x
   450
   451// Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
   452// because the x86 instructions are defined to use all 5 bits of the shift even
   453// for the small shifts. I don't think we'll ever generate a weird shift (e.g.
   454// (SHRW x (MOVLconst [24])), but just in case.
   455
   456(CMPL x (MOVLconst [c])) => (CMPLconst x [c])
   457(CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c]))
   458(CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)])
   459(CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)]))
   460(CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)])
   461(CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)]))
   462
   463// Canonicalize the order of arguments to comparisons - helps with CSE.
   464(CMP(L|W|B) x y) && canonLessThan(x,y) => (InvertFlags (CMP(L|W|B) y x))
   465
   466// strength reduction
   467// Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
   468//    1 - addl, shll, leal, negl, subl
   469//    3 - imull
   470// This limits the rewrites to two instructions.
   471// Note that negl always operates in-place,
   472// which can require a register-register move
   473// to preserve the original value,
   474// so it must be used with care.
   475(MULLconst [-9] x) => (NEGL (LEAL8 <v.Type> x x))
   476(MULLconst [-5] x) => (NEGL (LEAL4 <v.Type> x x))
   477(MULLconst [-3] x) => (NEGL (LEAL2 <v.Type> x x))
   478(MULLconst [-1] x) => (NEGL x)
   479(MULLconst [0] _) => (MOVLconst [0])
   480(MULLconst [1] x) => x
   481(MULLconst [3] x) => (LEAL2 x x)
   482(MULLconst [5] x) => (LEAL4 x x)
   483(MULLconst [7] x) => (LEAL2 x (LEAL2 <v.Type> x x))
   484(MULLconst [9] x) => (LEAL8 x x)
   485(MULLconst [11] x) => (LEAL2 x (LEAL4 <v.Type> x x))
   486(MULLconst [13] x) => (LEAL4 x (LEAL2 <v.Type> x x))
   487(MULLconst [19] x) => (LEAL2 x (LEAL8 <v.Type> x x))
   488(MULLconst [21] x) => (LEAL4 x (LEAL4 <v.Type> x x))
   489(MULLconst [25] x) => (LEAL8 x (LEAL2 <v.Type> x x))
   490(MULLconst [27] x) => (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x))
   491(MULLconst [37] x) => (LEAL4 x (LEAL8 <v.Type> x x))
   492(MULLconst [41] x) => (LEAL8 x (LEAL4 <v.Type> x x))
   493(MULLconst [45] x) => (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x))
   494(MULLconst [73] x) => (LEAL8 x (LEAL8 <v.Type> x x))
   495(MULLconst [81] x) => (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x))
   496
   497(MULLconst [c] x) && isPowerOfTwo(c+1) && c >= 15 => (SUBL (SHLLconst <v.Type> [int32(log32(c+1))] x) x)
   498(MULLconst [c] x) && isPowerOfTwo(c-1) && c >= 17 => (LEAL1 (SHLLconst <v.Type> [int32(log32(c-1))] x) x)
   499(MULLconst [c] x) && isPowerOfTwo(c-2) && c >= 34 => (LEAL2 (SHLLconst <v.Type> [int32(log32(c-2))] x) x)
   500(MULLconst [c] x) && isPowerOfTwo(c-4) && c >= 68 => (LEAL4 (SHLLconst <v.Type> [int32(log32(c-4))] x) x)
   501(MULLconst [c] x) && isPowerOfTwo(c-8) && c >= 136 => (LEAL8 (SHLLconst <v.Type> [int32(log32(c-8))] x) x)
   502(MULLconst [c] x) && c%3 == 0 && isPowerOfTwo(c/3) => (SHLLconst [int32(log32(c/3))] (LEAL2 <v.Type> x x))
   503(MULLconst [c] x) && c%5 == 0 && isPowerOfTwo(c/5) => (SHLLconst [int32(log32(c/5))] (LEAL4 <v.Type> x x))
   504(MULLconst [c] x) && c%9 == 0 && isPowerOfTwo(c/9) => (SHLLconst [int32(log32(c/9))] (LEAL8 <v.Type> x x))
   505
   506// combine add/shift into LEAL
   507(ADDL x (SHLLconst [3] y)) => (LEAL8 x y)
   508(ADDL x (SHLLconst [2] y)) => (LEAL4 x y)
   509(ADDL x (SHLLconst [1] y)) => (LEAL2 x y)
   510(ADDL x (ADDL y y)) => (LEAL2 x y)
   511(ADDL x (ADDL x y)) => (LEAL2 y x)
   512
   513// combine ADDL/ADDLconst into LEAL1
   514(ADDLconst [c] (ADDL x y)) => (LEAL1 [c] x y)
   515(ADDL (ADDLconst [c] x) y) => (LEAL1 [c] x y)
   516
   517// fold ADDL into LEAL
   518(ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
   519(LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
   520(ADDLconst [c] x:(SP)) => (LEAL [c] x) // so it is rematerializeable
   521(LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)
   522(ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)
   523
   524// fold ADDLconst into LEALx
   525(ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL1 [c+d] {s} x y)
   526(ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL2 [c+d] {s} x y)
   527(ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL4 [c+d] {s} x y)
   528(ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL8 [c+d] {s} x y)
   529(LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL1 [c+d] {s} x y)
   530(LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL2 [c+d] {s} x y)
   531(LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEAL2 [c+2*d] {s} x y)
   532(LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL4 [c+d] {s} x y)
   533(LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEAL4 [c+4*d] {s} x y)
   534(LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL8 [c+d] {s} x y)
   535(LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEAL8 [c+8*d] {s} x y)
   536
   537// fold shifts into LEALx
   538(LEAL1 [c] {s} x (SHLLconst [1] y)) => (LEAL2 [c] {s} x y)
   539(LEAL1 [c] {s} x (SHLLconst [2] y)) => (LEAL4 [c] {s} x y)
   540(LEAL1 [c] {s} x (SHLLconst [3] y)) => (LEAL8 [c] {s} x y)
   541(LEAL2 [c] {s} x (SHLLconst [1] y)) => (LEAL4 [c] {s} x y)
   542(LEAL2 [c] {s} x (SHLLconst [2] y)) => (LEAL8 [c] {s} x y)
   543(LEAL4 [c] {s} x (SHLLconst [1] y)) => (LEAL8 [c] {s} x y)
   544
   545// reverse ordering of compare instruction
   546(SETL (InvertFlags x)) => (SETG x)
   547(SETG (InvertFlags x)) => (SETL x)
   548(SETB (InvertFlags x)) => (SETA x)
   549(SETA (InvertFlags x)) => (SETB x)
   550(SETLE (InvertFlags x)) => (SETGE x)
   551(SETGE (InvertFlags x)) => (SETLE x)
   552(SETBE (InvertFlags x)) => (SETAE x)
   553(SETAE (InvertFlags x)) => (SETBE x)
   554(SETEQ (InvertFlags x)) => (SETEQ x)
   555(SETNE (InvertFlags x)) => (SETNE x)
   556
   557// sign extended loads
   558// Note: The combined instruction must end up in the same block
   559// as the original load. If not, we end up making a value with
   560// memory type live in two different blocks, which can lead to
   561// multiple memory values alive simultaneously.
   562// Make sure we don't combine these ops if the load has another use.
   563// This prevents a single load from being split into multiple loads
   564// which then might return different values.  See test/atomicload.go.
   565(MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem)
   566(MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
   567(MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem)
   568(MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
   569
   570// replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
   571(MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLZX x)
   572(MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLZX x)
   573(MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x
   574(MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLSX x)
   575(MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLSX x)
   576
   577// Fold extensions and ANDs together.
   578(MOVBLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x)
   579(MOVWLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x)
   580(MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x)
   581(MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x)
   582
   583// Don't extend before storing
   584(MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) => (MOVWstore [off] {sym} ptr x mem)
   585(MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) => (MOVBstore [off] {sym} ptr x mem)
   586
   587// fold constants into memory operations
   588// Note that this is not always a good idea because if not all the uses of
   589// the ADDLconst get eliminated, we still have to compute the ADDLconst and we now
   590// have potentially two live values (ptr and (ADDLconst [off] ptr)) instead of one.
   591// Nevertheless, let's do it!
   592(MOV(L|W|B|SS|SD)load  [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
   593    (MOV(L|W|B|SS|SD)load  [off1+off2] {sym} ptr mem)
   594(MOV(L|W|B|SS|SD)store  [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) =>
   595    (MOV(L|W|B|SS|SD)store  [off1+off2] {sym} ptr val mem)
   596
   597((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   598	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
   599((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   600	((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
   601((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   602	((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
   603((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
   604	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
   605((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && valoff1.canAdd32(off2) =>
   606	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {sym} base mem)
   607
   608// Fold constants into stores.
   609(MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   610	(MOVLstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   611(MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   612	(MOVWstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   613(MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   614	(MOVBstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   615
   616// Fold address offsets into constant stores.
   617(MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && sc.canAdd32(off) =>
   618	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {s} ptr mem)
   619
   620// We need to fold LEAL into the MOVx ops so that the live variable analysis knows
   621// what variables are being read/written by the ops.
   622// Note: we turn off this merging for operations on globals when building
   623// position-independent code (when Flag_shared is set).
   624// PIC needs a spare register to load the PC into.  Having the LEAL be
   625// a separate instruction gives us that register.  Having the LEAL be
   626// a separate instruction also allows it to be CSEd (which is good because
   627// it compiles to a thunk call).
   628(MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
   629  && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   630        (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1+off2] {mergeSym(sym1,sym2)} base mem)
   631
   632(MOV(L|W|B|SS|SD)store  [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
   633  && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   634	(MOV(L|W|B|SS|SD)store  [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   635
   636(MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && sc.canAdd32(off)
   637  && (ptr.Op != OpSB || !config.ctxt.Flag_shared) =>
   638	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem)
   639
   640((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   641	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   642	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   643((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   644	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   645	((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   646((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   647	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   648	((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   649((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem)
   650	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   651	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   652((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem)
   653	&& valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   654	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
   655
   656// Merge load/store to op
   657((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem)
   658((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
   659((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
   660(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   661(MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
   662	((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   663(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem)
   664	&& y.Uses==1 && l.Uses==1 && clobber(y, l) =>
   665	((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff(c,off)] {sym} ptr mem)
   666
   667// fold LEALs together
   668(LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   669      (LEAL [off1+off2] {mergeSym(sym1,sym2)} x)
   670
   671// LEAL into LEAL1
   672(LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   673       (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   674
   675// LEAL1 into LEAL
   676(LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   677       (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   678
   679// LEAL into LEAL[248]
   680(LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   681       (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   682(LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   683       (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   684(LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   685       (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   686
   687// LEAL[248] into LEAL
   688(LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   689      (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   690(LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   691      (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   692(LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   693      (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   694
   695// LEAL[1248] into LEAL[1248]. Only some such merges are possible.
   696(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   697      (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} x y)
   698(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   699      (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} y x)
   700(LEAL2 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+2*int64(off2)) =>
   701      (LEAL4 [off1+2*off2] {sym} x y)
   702(LEAL4 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+4*int64(off2)) =>
   703      (LEAL8 [off1+4*off2] {sym} x y)
   704
   705// Absorb InvertFlags into branches.
   706(LT (InvertFlags cmp) yes no) => (GT cmp yes no)
   707(GT (InvertFlags cmp) yes no) => (LT cmp yes no)
   708(LE (InvertFlags cmp) yes no) => (GE cmp yes no)
   709(GE (InvertFlags cmp) yes no) => (LE cmp yes no)
   710(ULT (InvertFlags cmp) yes no) => (UGT cmp yes no)
   711(UGT (InvertFlags cmp) yes no) => (ULT cmp yes no)
   712(ULE (InvertFlags cmp) yes no) => (UGE cmp yes no)
   713(UGE (InvertFlags cmp) yes no) => (ULE cmp yes no)
   714(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
   715(NE (InvertFlags cmp) yes no) => (NE cmp yes no)
   716
   717// Constant comparisons.
   718(CMPLconst (MOVLconst [x]) [y]) && x==y                       => (FlagEQ)
   719(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT)
   720(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT)
   721(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT)
   722(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT)
   723
   724(CMPWconst (MOVLconst [x]) [y]) && int16(x)==y                       => (FlagEQ)
   725(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT)
   726(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT)
   727(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT)
   728(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT)
   729
   730(CMPBconst (MOVLconst [x]) [y]) && int8(x)==y                      => (FlagEQ)
   731(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT)
   732(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT)
   733(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT)
   734(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT)
   735
   736// Other known comparisons.
   737(CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT)
   738(CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
   739(CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT)
   740(CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT)
   741// TODO: DIVxU also.
   742
   743// Absorb flag constants into SBB ops.
   744(SBBLcarrymask (FlagEQ)) => (MOVLconst [0])
   745(SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1])
   746(SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0])
   747(SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1])
   748(SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0])
   749
   750// Absorb flag constants into branches.
   751(EQ (FlagEQ) yes no) => (First yes no)
   752(EQ (FlagLT_ULT) yes no) => (First no yes)
   753(EQ (FlagLT_UGT) yes no) => (First no yes)
   754(EQ (FlagGT_ULT) yes no) => (First no yes)
   755(EQ (FlagGT_UGT) yes no) => (First no yes)
   756
   757(NE (FlagEQ) yes no) => (First no yes)
   758(NE (FlagLT_ULT) yes no) => (First yes no)
   759(NE (FlagLT_UGT) yes no) => (First yes no)
   760(NE (FlagGT_ULT) yes no) => (First yes no)
   761(NE (FlagGT_UGT) yes no) => (First yes no)
   762
   763(LT (FlagEQ) yes no) => (First no yes)
   764(LT (FlagLT_ULT) yes no) => (First yes no)
   765(LT (FlagLT_UGT) yes no) => (First yes no)
   766(LT (FlagGT_ULT) yes no) => (First no yes)
   767(LT (FlagGT_UGT) yes no) => (First no yes)
   768
   769(LE (FlagEQ) yes no) => (First yes no)
   770(LE (FlagLT_ULT) yes no) => (First yes no)
   771(LE (FlagLT_UGT) yes no) => (First yes no)
   772(LE (FlagGT_ULT) yes no) => (First no yes)
   773(LE (FlagGT_UGT) yes no) => (First no yes)
   774
   775(GT (FlagEQ) yes no) => (First no yes)
   776(GT (FlagLT_ULT) yes no) => (First no yes)
   777(GT (FlagLT_UGT) yes no) => (First no yes)
   778(GT (FlagGT_ULT) yes no) => (First yes no)
   779(GT (FlagGT_UGT) yes no) => (First yes no)
   780
   781(GE (FlagEQ) yes no) => (First yes no)
   782(GE (FlagLT_ULT) yes no) => (First no yes)
   783(GE (FlagLT_UGT) yes no) => (First no yes)
   784(GE (FlagGT_ULT) yes no) => (First yes no)
   785(GE (FlagGT_UGT) yes no) => (First yes no)
   786
   787(ULT (FlagEQ) yes no) => (First no yes)
   788(ULT (FlagLT_ULT) yes no) => (First yes no)
   789(ULT (FlagLT_UGT) yes no) => (First no yes)
   790(ULT (FlagGT_ULT) yes no) => (First yes no)
   791(ULT (FlagGT_UGT) yes no) => (First no yes)
   792
   793(ULE (FlagEQ) yes no) => (First yes no)
   794(ULE (FlagLT_ULT) yes no) => (First yes no)
   795(ULE (FlagLT_UGT) yes no) => (First no yes)
   796(ULE (FlagGT_ULT) yes no) => (First yes no)
   797(ULE (FlagGT_UGT) yes no) => (First no yes)
   798
   799(UGT (FlagEQ) yes no) => (First no yes)
   800(UGT (FlagLT_ULT) yes no) => (First no yes)
   801(UGT (FlagLT_UGT) yes no) => (First yes no)
   802(UGT (FlagGT_ULT) yes no) => (First no yes)
   803(UGT (FlagGT_UGT) yes no) => (First yes no)
   804
   805(UGE (FlagEQ) yes no) => (First yes no)
   806(UGE (FlagLT_ULT) yes no) => (First no yes)
   807(UGE (FlagLT_UGT) yes no) => (First yes no)
   808(UGE (FlagGT_ULT) yes no) => (First no yes)
   809(UGE (FlagGT_UGT) yes no) => (First yes no)
   810
   811// Absorb flag constants into SETxx ops.
   812(SETEQ (FlagEQ)) => (MOVLconst [1])
   813(SETEQ (FlagLT_ULT)) => (MOVLconst [0])
   814(SETEQ (FlagLT_UGT)) => (MOVLconst [0])
   815(SETEQ (FlagGT_ULT)) => (MOVLconst [0])
   816(SETEQ (FlagGT_UGT)) => (MOVLconst [0])
   817
   818(SETNE (FlagEQ)) => (MOVLconst [0])
   819(SETNE (FlagLT_ULT)) => (MOVLconst [1])
   820(SETNE (FlagLT_UGT)) => (MOVLconst [1])
   821(SETNE (FlagGT_ULT)) => (MOVLconst [1])
   822(SETNE (FlagGT_UGT)) => (MOVLconst [1])
   823
   824(SETL (FlagEQ)) => (MOVLconst [0])
   825(SETL (FlagLT_ULT)) => (MOVLconst [1])
   826(SETL (FlagLT_UGT)) => (MOVLconst [1])
   827(SETL (FlagGT_ULT)) => (MOVLconst [0])
   828(SETL (FlagGT_UGT)) => (MOVLconst [0])
   829
   830(SETLE (FlagEQ)) => (MOVLconst [1])
   831(SETLE (FlagLT_ULT)) => (MOVLconst [1])
   832(SETLE (FlagLT_UGT)) => (MOVLconst [1])
   833(SETLE (FlagGT_ULT)) => (MOVLconst [0])
   834(SETLE (FlagGT_UGT)) => (MOVLconst [0])
   835
   836(SETG (FlagEQ)) => (MOVLconst [0])
   837(SETG (FlagLT_ULT)) => (MOVLconst [0])
   838(SETG (FlagLT_UGT)) => (MOVLconst [0])
   839(SETG (FlagGT_ULT)) => (MOVLconst [1])
   840(SETG (FlagGT_UGT)) => (MOVLconst [1])
   841
   842(SETGE (FlagEQ)) => (MOVLconst [1])
   843(SETGE (FlagLT_ULT)) => (MOVLconst [0])
   844(SETGE (FlagLT_UGT)) => (MOVLconst [0])
   845(SETGE (FlagGT_ULT)) => (MOVLconst [1])
   846(SETGE (FlagGT_UGT)) => (MOVLconst [1])
   847
   848(SETB (FlagEQ)) => (MOVLconst [0])
   849(SETB (FlagLT_ULT)) => (MOVLconst [1])
   850(SETB (FlagLT_UGT)) => (MOVLconst [0])
   851(SETB (FlagGT_ULT)) => (MOVLconst [1])
   852(SETB (FlagGT_UGT)) => (MOVLconst [0])
   853
   854(SETBE (FlagEQ)) => (MOVLconst [1])
   855(SETBE (FlagLT_ULT)) => (MOVLconst [1])
   856(SETBE (FlagLT_UGT)) => (MOVLconst [0])
   857(SETBE (FlagGT_ULT)) => (MOVLconst [1])
   858(SETBE (FlagGT_UGT)) => (MOVLconst [0])
   859
   860(SETA (FlagEQ)) => (MOVLconst [0])
   861(SETA (FlagLT_ULT)) => (MOVLconst [0])
   862(SETA (FlagLT_UGT)) => (MOVLconst [1])
   863(SETA (FlagGT_ULT)) => (MOVLconst [0])
   864(SETA (FlagGT_UGT)) => (MOVLconst [1])
   865
   866(SETAE (FlagEQ)) => (MOVLconst [1])
   867(SETAE (FlagLT_ULT)) => (MOVLconst [0])
   868(SETAE (FlagLT_UGT)) => (MOVLconst [1])
   869(SETAE (FlagGT_ULT)) => (MOVLconst [0])
   870(SETAE (FlagGT_UGT)) => (MOVLconst [1])
   871
   872// Remove redundant *const ops
   873(ADDLconst [c] x) && c==0  => x
   874(SUBLconst [c] x) && c==0  => x
   875(ANDLconst [c] _) && c==0  => (MOVLconst [0])
   876(ANDLconst [c] x) && c==-1 => x
   877(ORLconst [c] x)  && c==0  => x
   878(ORLconst [c] _)  && c==-1 => (MOVLconst [-1])
   879(XORLconst [c] x) && c==0  => x
   880// TODO: since we got rid of the W/B versions, we might miss
   881// things like (ANDLconst [0x100] x) which were formerly
   882// (ANDBconst [0] x).  Probably doesn't happen very often.
   883// If we cared, we might do:
   884//  (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 => (MOVLconst [0])
   885
   886// Convert constant subtracts to constant adds
   887(SUBLconst [c] x) => (ADDLconst [-c] x)
   888
   889// generic constant folding
   890// TODO: more of this
   891(ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d])
   892(ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x)
   893(SARLconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   894(SARWconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   895(SARBconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   896(NEGL (MOVLconst [c])) => (MOVLconst [-c])
   897(MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d])
   898(ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d])
   899(ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d])
   900(XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d])
   901(NOTL (MOVLconst [c])) => (MOVLconst [^c])
   902
   903// generic simplifications
   904// TODO: more of this
   905(ADDL x (NEGL y)) => (SUBL x y)
   906(SUBL x x) => (MOVLconst [0])
   907(ANDL x x) => x
   908(ORL x x) => x
   909(XORL x x) => (MOVLconst [0])
   910
   911// checking AND against 0.
   912(CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 => (TEST(L|W|B) x y)
   913(CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTLconst [c] x)
   914(CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTWconst [int16(c)] x)
   915(CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTBconst [int8(c)] x)
   916
   917// TEST %reg,%reg is shorter than CMP
   918(CMP(L|W|B)const x [0]) => (TEST(L|W|B) x x)
   919
   920// Convert LEAL1 back to ADDL if we can
   921(LEAL1 [0] {nil} x y) => (ADDL x y)
   922
   923// For PIC, break floating-point constant loading into two instructions so we have
   924// a register to use for holding the address of the constant pool entry.
   925(MOVSSconst [c]) && config.ctxt.Flag_shared => (MOVSSconst2 (MOVSSconst1 [c]))
   926(MOVSDconst [c]) && config.ctxt.Flag_shared => (MOVSDconst2 (MOVSDconst1 [c]))
   927
   928(CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(L|W|B)load {sym} [off] ptr x mem)
   929(CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem))
   930
   931(CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c])
   932	&& l.Uses == 1
   933	&& clobber(l) =>
   934  @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff(int32(c),off)] ptr mem)
   935
   936(CMPLload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPLconstload {sym} [makeValAndOff(c,off)] ptr mem)
   937(CMPWload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem)
   938(CMPBload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem)
   939
   940(MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))])
   941(MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))])
   942(MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))])

View as plain text