...

Text file src/cmd/compile/internal/ssa/_gen/PPC64.rules

Documentation: cmd/compile/internal/ssa/_gen

     1// Copyright 2016 The Go Authors. All rights reserved.
     2// Use of this source code is governed by a BSD-style
     3// license that can be found in the LICENSE file.
     4
     5// GOPPC64 values indicate power8, power9, etc.
     6// That means the code is compiled for that target,
     7// and will not run on earlier targets.
     8//
     9(Add(Ptr|64|32|16|8) ...) => (ADD ...)
    10(Add64F ...) => (FADD ...)
    11(Add32F ...) => (FADDS ...)
    12
    13(Sub(Ptr|64|32|16|8) ...) => (SUB ...)
    14(Sub32F ...) => (FSUBS ...)
    15(Sub64F ...) => (FSUB ...)
    16
    17(Min(32|64)F x y) && buildcfg.GOPPC64 >= 9 => (XSMINJDP x y)
    18(Max(32|64)F x y) && buildcfg.GOPPC64 >= 9 => (XSMAXJDP x y)
    19
    20// Combine 64 bit integer multiply and adds
    21(ADD l:(MULLD x y) z) && buildcfg.GOPPC64 >= 9 && l.Uses == 1 && clobber(l) => (MADDLD x y z)
    22
    23(Mod16 x y) => (Mod32 (SignExt16to32 x) (SignExt16to32 y))
    24(Mod16u x y) => (Mod32u (ZeroExt16to32 x) (ZeroExt16to32 y))
    25(Mod8 x y) => (Mod32 (SignExt8to32 x) (SignExt8to32 y))
    26(Mod8u x y) => (Mod32u (ZeroExt8to32 x) (ZeroExt8to32 y))
    27(Mod64 x y) && buildcfg.GOPPC64 >=9 => (MODSD x y)
    28(Mod64 x y) && buildcfg.GOPPC64 <=8 => (SUB x (MULLD y (DIVD x y)))
    29(Mod64u x y) && buildcfg.GOPPC64 >= 9 => (MODUD x y)
    30(Mod64u x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLD y (DIVDU x y)))
    31(Mod32 x y) && buildcfg.GOPPC64 >= 9 => (MODSW x y)
    32(Mod32 x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLW y (DIVW x y)))
    33(Mod32u x y) && buildcfg.GOPPC64 >= 9 => (MODUW x y)
    34(Mod32u x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLW y (DIVWU x y)))
    35
    36// (x + y) / 2 with x>=y => (x - y) / 2 + y
    37(Avg64u <t> x y) => (ADD (SRDconst <t> (SUB <t> x y) [1]) y)
    38
    39(Mul64 ...) => (MULLD ...)
    40(Mul(32|16|8) ...) => (MULLW ...)
    41(Select0 (Mul64uhilo x y)) => (MULHDU x y)
    42(Select1 (Mul64uhilo x y)) => (MULLD x y)
    43(Select0 (Mul64uover x y)) => (MULLD x y)
    44(Select1 (Mul64uover x y)) => (SETBCR [2] (CMPconst [0] (MULHDU <x.Type> x y)))
    45
    46(Div64 [false] x y) => (DIVD x y)
    47(Div64u ...) => (DIVDU ...)
    48(Div32 [false] x y) => (DIVW x y)
    49(Div32u ...) => (DIVWU ...)
    50(Div16 [false]  x y) => (DIVW  (SignExt16to32 x) (SignExt16to32 y))
    51(Div16u x y) => (DIVWU (ZeroExt16to32 x) (ZeroExt16to32 y))
    52(Div8 x y) => (DIVW  (SignExt8to32 x) (SignExt8to32 y))
    53(Div8u x y) => (DIVWU (ZeroExt8to32 x) (ZeroExt8to32 y))
    54
    55(Hmul(64|64u|32|32u) ...) => (MULH(D|DU|W|WU) ...)
    56
    57(Mul(32|64)F ...) => ((FMULS|FMUL) ...)
    58
    59(Div(32|64)F ...) => ((FDIVS|FDIV) ...)
    60
    61// Lowering float <=> int
    62(Cvt32to(32|64)F x) => ((FCFIDS|FCFID) (MTVSRD (SignExt32to64 x)))
    63(Cvt64to(32|64)F x) => ((FCFIDS|FCFID) (MTVSRD x))
    64
    65(Cvt32Fto(32|64) x) => (MFVSRD (FCTI(W|D)Z x))
    66(Cvt64Fto(32|64) x) => (MFVSRD (FCTI(W|D)Z x))
    67
    68(Cvt32Fto64F ...) => (Copy ...) // Note v will have the wrong type for patterns dependent on Float32/Float64
    69(Cvt64Fto32F ...) => (FRSP ...)
    70
    71(CvtBoolToUint8 ...) => (Copy ...)
    72
    73(Round(32|64)F ...) => (LoweredRound(32|64)F ...)
    74
    75(Sqrt ...) => (FSQRT ...)
    76(Sqrt32 ...) => (FSQRTS ...)
    77(Floor ...) => (FFLOOR ...)
    78(Ceil ...) => (FCEIL ...)
    79(Trunc ...) => (FTRUNC ...)
    80(Round ...) => (FROUND ...)
    81(Copysign x y) => (FCPSGN y x)
    82(Abs ...) => (FABS ...)
    83(FMA ...) => (FMADD ...)
    84
    85// Lowering extension
    86// Note: we always extend to 64 bits even though some ops don't need that many result bits.
    87(SignExt8to(16|32|64) ...) => (MOVBreg ...)
    88(SignExt16to(32|64) ...) => (MOVHreg ...)
    89(SignExt32to64 ...) => (MOVWreg ...)
    90
    91(ZeroExt8to(16|32|64) ...) => (MOVBZreg ...)
    92(ZeroExt16to(32|64) ...) => (MOVHZreg ...)
    93(ZeroExt32to64 ...) => (MOVWZreg ...)
    94
    95(Trunc(16|32|64)to8 <t> x) && t.IsSigned() => (MOVBreg x)
    96(Trunc(16|32|64)to8  x) => (MOVBZreg x)
    97(Trunc(32|64)to16 <t> x) && t.IsSigned() => (MOVHreg x)
    98(Trunc(32|64)to16 x) => (MOVHZreg x)
    99(Trunc64to32 <t> x) && t.IsSigned() => (MOVWreg x)
   100(Trunc64to32 x) => (MOVWZreg x)
   101
   102// Lowering constants
   103(Const(64|32|16|8) [val]) => (MOVDconst [int64(val)])
   104(Const(32|64)F ...) => (FMOV(S|D)const ...)
   105(ConstNil) => (MOVDconst [0])
   106(ConstBool [t]) => (MOVDconst [b2i(t)])
   107
   108// Carrying addition.
   109(Select0 (Add64carry x y c)) =>            (Select0 <typ.UInt64> (ADDE x y (Select1 <typ.UInt64> (ADDCconst c [-1]))))
   110(Select1 (Add64carry x y c)) => (ADDZEzero (Select1 <typ.UInt64> (ADDE x y (Select1 <typ.UInt64> (ADDCconst c [-1])))))
   111// Fold initial carry bit if 0.
   112(ADDE x y (Select1 <typ.UInt64> (ADDCconst (MOVDconst [0]) [-1]))) => (ADDC x y)
   113// Fold transfer of CA -> GPR -> CA. Note 2 uses when feeding into a chained Add64carry.
   114(Select1 (ADDCconst n:(ADDZEzero x) [-1])) && n.Uses <= 2 => x
   115(ADDE (MOVDconst [0]) y c) => (ADDZE y c)
   116(ADDC x (MOVDconst [y])) && is16Bit(y) => (ADDCconst [y] x)
   117
   118// Borrowing subtraction.
   119(Select0 (Sub64borrow x y c)) =>                 (Select0 <typ.UInt64> (SUBE x y (Select1 <typ.UInt64> (SUBCconst c [0]))))
   120(Select1 (Sub64borrow x y c)) => (NEG (SUBZEzero (Select1 <typ.UInt64> (SUBE x y (Select1 <typ.UInt64> (SUBCconst c [0]))))))
   121// Fold initial borrow bit if 0.
   122(SUBE x y (Select1 <typ.UInt64> (SUBCconst (MOVDconst [0]) [0]))) => (SUBC x y)
   123// Fold transfer of CA -> GPR -> CA. Note 2 uses when feeding into a chained Sub64borrow.
   124(Select1 (SUBCconst n:(NEG (SUBZEzero x)) [0])) && n.Uses <= 2 => x
   125
   126// Constant folding
   127(FABS (FMOVDconst [x])) => (FMOVDconst [math.Abs(x)])
   128(FSQRT (FMOVDconst [x])) && x >= 0 => (FMOVDconst [math.Sqrt(x)])
   129(FFLOOR (FMOVDconst [x])) => (FMOVDconst [math.Floor(x)])
   130(FCEIL (FMOVDconst [x])) => (FMOVDconst [math.Ceil(x)])
   131(FTRUNC (FMOVDconst [x])) => (FMOVDconst [math.Trunc(x)])
   132
   133// Rotates
   134(RotateLeft8 <t> x (MOVDconst [c])) => (Or8 (Lsh8x64 <t> x (MOVDconst [c&7])) (Rsh8Ux64 <t> x (MOVDconst [-c&7])))
   135(RotateLeft16 <t> x (MOVDconst [c])) => (Or16 (Lsh16x64 <t> x (MOVDconst [c&15])) (Rsh16Ux64 <t> x (MOVDconst [-c&15])))
   136(RotateLeft(32|64) ...) => ((ROTLW|ROTL) ...)
   137
   138// Constant rotate generation
   139(ROTLW  x (MOVDconst [c])) => (ROTLWconst  x [c&31])
   140(ROTL   x (MOVDconst [c])) => (ROTLconst   x [c&63])
   141
   142// Combine rotate and mask operations
   143(ANDconst [m] (ROTLWconst [r] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,m,32)] x)
   144(AND (MOVDconst [m]) (ROTLWconst [r] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,m,32)] x)
   145(ANDconst [m] (ROTLW x r)) && isPPC64WordRotateMask(m) => (RLWNM [encodePPC64RotateMask(0,m,32)] x r)
   146(AND (MOVDconst [m]) (ROTLW x r)) && isPPC64WordRotateMask(m) => (RLWNM [encodePPC64RotateMask(0,m,32)] x r)
   147
   148// Note, any rotated word bitmask is still a valid word bitmask.
   149(ROTLWconst [r] (AND (MOVDconst [m]) x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,rotateLeft32(m,r),32)] x)
   150(ROTLWconst [r] (ANDconst [m] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,rotateLeft32(m,r),32)] x)
   151
   152(ANDconst [m] (SRWconst x [s])) && mergePPC64RShiftMask(m,s,32) == 0 => (MOVDconst [0])
   153(ANDconst [m] (SRWconst x [s])) && mergePPC64AndSrwi(m,s) != 0 => (RLWINM [mergePPC64AndSrwi(m,s)] x)
   154(ANDconst [m] (SRDconst x [s])) && mergePPC64AndSrdi(m,s) != 0 => (RLWINM [mergePPC64AndSrdi(m,s)] x)
   155(AND (MOVDconst [m]) (SRWconst x [s])) && mergePPC64RShiftMask(m,s,32) == 0 => (MOVDconst [0])
   156(AND (MOVDconst [m]) (SRWconst x [s])) && mergePPC64AndSrwi(m,s) != 0 => (RLWINM [mergePPC64AndSrwi(m,s)] x)
   157(AND (MOVDconst [m]) (SRDconst x [s])) && mergePPC64AndSrdi(m,s) != 0 => (RLWINM [mergePPC64AndSrdi(m,s)] x)
   158
   159(SRWconst (ANDconst [m] x) [s]) && mergePPC64RShiftMask(m>>uint(s),s,32) == 0 => (MOVDconst [0])
   160(SRWconst (ANDconst [m] x) [s]) && mergePPC64AndSrwi(m>>uint(s),s) != 0 => (RLWINM [mergePPC64AndSrwi(m>>uint(s),s)] x)
   161(SRWconst (AND (MOVDconst [m]) x) [s]) && mergePPC64RShiftMask(m>>uint(s),s,32) == 0 => (MOVDconst [0])
   162(SRWconst (AND (MOVDconst [m]) x) [s]) && mergePPC64AndSrwi(m>>uint(s),s) != 0 => (RLWINM [mergePPC64AndSrwi(m>>uint(s),s)] x)
   163
   164(ANDconst [m] (SLDconst x [s])) && mergePPC64AndSldi(m,s) != 0 => (RLWINM [mergePPC64AndSldi(m,s)] x)
   165(AND (MOVDconst [m]) (SLDconst x [s])) && mergePPC64AndSldi(m,s) != 0 => (RLWINM [mergePPC64AndSldi(m,s)] x)
   166
   167// Merge shift right + shift left and clear left (e.g for a table lookup)
   168(CLRLSLDI [c] (SRWconst [s] x)) && mergePPC64ClrlsldiSrw(int64(c),s) != 0 => (RLWINM [mergePPC64ClrlsldiSrw(int64(c),s)] x)
   169(CLRLSLDI [c] (SRDconst [s] x)) && mergePPC64ClrlsldiSrd(int64(c),s) != 0 => (RLWINM [mergePPC64ClrlsldiSrd(int64(c),s)] x)
   170(SLDconst [l] (SRWconst [r] x)) && mergePPC64SldiSrw(l,r) != 0 => (RLWINM [mergePPC64SldiSrw(l,r)] x)
   171// The following reduction shows up frequently too. e.g b[(x>>14)&0xFF]
   172(CLRLSLDI [c] i:(RLWINM [s] x)) && mergePPC64ClrlsldiRlwinm(c,s) != 0 => (RLWINM [mergePPC64ClrlsldiRlwinm(c,s)] x)
   173
   174// large constant signed right shift, we leave the sign bit
   175(Rsh64x64 x (MOVDconst [c])) && uint64(c) >= 64 => (SRADconst x [63])
   176(Rsh32x64 x (MOVDconst [c])) && uint64(c) >= 32 => (SRAWconst x [63])
   177(Rsh16x64 x (MOVDconst [c])) && uint64(c) >= 16 => (SRAWconst (SignExt16to32 x) [63])
   178(Rsh8x64  x (MOVDconst [c])) && uint64(c) >= 8  => (SRAWconst (SignExt8to32  x) [63])
   179
   180// constant shifts
   181((Lsh64|Rsh64|Rsh64U)x64  x (MOVDconst [c])) && uint64(c) < 64 => (S(L|RA|R)Dconst x [c])
   182((Lsh32|Rsh32|Rsh32U)x64  x (MOVDconst [c])) && uint64(c) < 32 => (S(L|RA|R)Wconst x [c])
   183((Rsh16|Rsh16U)x64  x (MOVDconst [c])) && uint64(c) < 16 => (SR(AW|W)const ((Sign|Zero)Ext16to32 x) [c])
   184(Lsh16x64  x (MOVDconst [c])) && uint64(c) < 16 => (SLWconst x [c])
   185((Rsh8|Rsh8U)x64  x (MOVDconst [c])) && uint64(c) < 8 => (SR(AW|W)const ((Sign|Zero)Ext8to32 x) [c])
   186(Lsh8x64  x (MOVDconst [c])) && uint64(c) < 8 => (SLWconst x [c])
   187
   188// Lower bounded shifts first. No need to check shift value.
   189(Lsh64x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLD x y)
   190(Lsh32x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLW x y)
   191(Lsh16x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLD x y)
   192(Lsh8x(64|32|16|8)   x y) && shiftIsBounded(v) => (SLD x y)
   193(Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD x y)
   194(Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW x y)
   195(Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD (MOVHZreg x) y)
   196(Rsh8Ux(64|32|16|8)  x y) && shiftIsBounded(v) => (SRD (MOVBZreg x) y)
   197(Rsh64x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAD x y)
   198(Rsh32x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAW x y)
   199(Rsh16x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAD (MOVHreg x) y)
   200(Rsh8x(64|32|16|8)   x y) && shiftIsBounded(v) => (SRAD (MOVBreg x) y)
   201
   202// Unbounded shifts. Go shifts saturate to 0 or -1 when shifting beyond the number of
   203// bits in a type, PPC64 shifts do not (see the ISA for details).
   204//
   205// Note, y is always non-negative.
   206//
   207// Note, ISELZ is intentionally not used in lower. Where possible, ISEL is converted to ISELZ in late lower
   208// after all the ISEL folding rules have been exercised.
   209
   210((Rsh64U|Lsh64)x64 <t> x y)  => (ISEL [0] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPUconst y [64]))
   211((Rsh64U|Lsh64)x32 <t> x y)  => (ISEL [0] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPWUconst y [64]))
   212((Rsh64U|Lsh64)x16 <t> x y)  => (ISEL [2] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0xFFC0] y)))
   213((Rsh64U|Lsh64)x8  <t> x y)  => (ISEL [2] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0x00C0] y)))
   214(Rsh64x(64|32)     <t> x y)  => (ISEL [0] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMP(U|WU)const y [64]))
   215(Rsh64x16          <t> x y)  => (ISEL [2] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMPconst [0] (ANDconst [0xFFC0] y)))
   216(Rsh64x8           <t> x y)  => (ISEL [2] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMPconst [0] (ANDconst [0x00C0] y)))
   217
   218((Rsh32U|Lsh32)x64 <t> x y)  => (ISEL [0] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPUconst y [32]))
   219((Rsh32U|Lsh32)x32 <t> x y)  => (ISEL [0] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPWUconst y [32]))
   220((Rsh32U|Lsh32)x16 <t> x y)  => (ISEL [2] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0xFFE0] y)))
   221((Rsh32U|Lsh32)x8  <t> x y)  => (ISEL [2] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0x00E0] y)))
   222(Rsh32x(64|32)     <t> x y)  => (ISEL [0] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMP(U|WU)const y [32]))
   223(Rsh32x16          <t> x y)  => (ISEL [2] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMPconst [0] (ANDconst [0xFFE0] y)))
   224(Rsh32x8           <t> x y)  => (ISEL [2] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMPconst [0] (ANDconst [0x00E0] y)))
   225
   226((Rsh16U|Lsh16)x64 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPUconst  y [16]))
   227((Rsh16U|Lsh16)x32 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPWUconst y [16]))
   228((Rsh16U|Lsh16)x16 <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPconst [0] (ANDconst [0xFFF0] y)))
   229((Rsh16U|Lsh16)x8  <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPconst [0] (ANDconst [0x00F0] y)))
   230(Rsh16x(64|32)     <t> x y) => (ISEL [0] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMP(U|WU)const  y [16]))
   231(Rsh16x16          <t> x y) => (ISEL [2] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMPconst [0] (ANDconst [0xFFF0] y)))
   232(Rsh16x8           <t> x y) => (ISEL [2] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMPconst [0] (ANDconst [0x00F0] y)))
   233
   234((Rsh8U|Lsh8)x64 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPUconst  y [8]))
   235((Rsh8U|Lsh8)x32 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPWUconst y [8]))
   236((Rsh8U|Lsh8)x16 <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPconst [0] (ANDconst [0xFFF8] y)))
   237((Rsh8U|Lsh8)x8  <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPconst [0] (ANDconst [0x00F8] y)))
   238(Rsh8x(64|32)    <t> x y) => (ISEL [0] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMP(U|WU)const  y [8]))
   239(Rsh8x16         <t> x y) => (ISEL [2] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMPconst [0] (ANDconst [0xFFF8] y)))
   240(Rsh8x8          <t> x y) => (ISEL [2] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMPconst [0] (ANDconst [0x00F8] y)))
   241
   242// Catch bounded shifts in situations like foo<<uint(shift&63) which might not be caught by the prove pass.
   243(CMP(U|WU)const [d] (ANDconst z [c])) && uint64(d) > uint64(c) => (FlagLT)
   244
   245(ORN x (MOVDconst [-1])) => x
   246
   247(S(RAD|RD|LD) x (MOVDconst [c])) => (S(RAD|RD|LD)const [c&63 | (c>>6&1*63)] x)
   248(S(RAW|RW|LW) x (MOVDconst [c])) => (S(RAW|RW|LW)const [c&31 | (c>>5&1*31)] x)
   249
   250(Addr {sym} base) => (MOVDaddr {sym} [0] base)
   251(LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (MOVDaddr {sym} (SPanchored base mem))
   252(LocalAddr <t> {sym} base _)  && !t.Elem().HasPointers() => (MOVDaddr {sym} base)
   253(OffPtr [off] ptr) => (ADD (MOVDconst <typ.Int64> [off]) ptr)
   254(MOVDaddr {sym} [n] p:(ADD x y)) && sym == nil && n == 0 => p
   255(MOVDaddr {sym} [n] ptr) && sym == nil && n == 0 && (ptr.Op == OpArgIntReg || ptr.Op == OpPhi) => ptr
   256
   257(Ctz(64|32|16|8)NonZero ...) => (Ctz64 ...)
   258
   259(Ctz64 x) && buildcfg.GOPPC64 <= 8 => (POPCNTD (ANDN <typ.Int64> (ADDconst <typ.Int64> [-1] x) x))
   260(Ctz32 x) && buildcfg.GOPPC64 <= 8 => (POPCNTW (MOVWZreg (ANDN <typ.Int> (ADDconst <typ.Int> [-1] x) x)))
   261(Ctz16 x) && buildcfg.GOPPC64 <= 8 => (POPCNTW (MOVHZreg (ANDN <typ.Int16> (ADDconst <typ.Int16> [-1] x) x)))
   262(Ctz8  x) && buildcfg.GOPPC64 <= 8 => (POPCNTB (MOVBZreg (ANDN <typ.UInt8> (ADDconst <typ.UInt8> [-1] x) x)))
   263
   264(Ctz64 x) && buildcfg.GOPPC64 >= 9 => (CNTTZD x)
   265(Ctz32 x) && buildcfg.GOPPC64 >= 9 => (CNTTZW (MOVWZreg x))
   266(Ctz16 x) && buildcfg.GOPPC64 >= 9 => (CNTTZD (OR <typ.UInt64> x (MOVDconst [1<<16])))
   267(Ctz8  x) && buildcfg.GOPPC64 >= 9 => (CNTTZD (OR <typ.UInt64> x (MOVDconst [1<<8])))
   268
   269(BitLen64 x) => (SUBFCconst [64] (CNTLZD <typ.Int> x))
   270(BitLen32 x) => (SUBFCconst [32] (CNTLZW <typ.Int> x))
   271(BitLen(16|8) x) => (BitLen64 (ZeroExt(16|8)to64 x))
   272
   273(PopCount64 ...) => (POPCNTD ...)
   274(PopCount(32|16|8) x) => (POPCNT(W|W|B) (MOV(W|H|B)Zreg x))
   275
   276(And(64|32|16|8) ...) => (AND ...)
   277(Or(64|32|16|8) ...) => (OR ...)
   278(Xor(64|32|16|8) ...) => (XOR ...)
   279
   280(Neg(64|32|16|8) ...) => (NEG ...)
   281(Neg(64|32)F ...) => (FNEG ...)
   282
   283(Com(64|32|16|8) x) => (NOR x x)
   284
   285// Lowering boolean ops
   286(AndB ...) => (AND ...)
   287(OrB ...) => (OR ...)
   288(Not x) => (XORconst [1] x)
   289
   290// Merge logical operations
   291(AND x (NOR y y)) => (ANDN x y)
   292(OR x (NOR y y)) => (ORN x y)
   293
   294// Lowering comparisons
   295(EqB x y)  => (ANDconst [1] (EQV x y))
   296// Sign extension dependence on operand sign sets up for sign/zero-extension elision later
   297(Eq(8|16) x y) && x.Type.IsSigned() && y.Type.IsSigned() => (Equal (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   298(Eq(8|16) x y) => (Equal (CMPW (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   299(Eq(32|64|Ptr) x y) => (Equal ((CMPW|CMP|CMP) x y))
   300(Eq(32|64)F x y) => (Equal (FCMPU x y))
   301
   302(NeqB ...) => (XOR ...)
   303// Like Eq8 and Eq16, prefer sign extension likely to enable later elision.
   304(Neq(8|16) x y) && x.Type.IsSigned() && y.Type.IsSigned() => (NotEqual (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   305(Neq(8|16) x y)  => (NotEqual (CMPW (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   306(Neq(32|64|Ptr) x y) => (NotEqual ((CMPW|CMP|CMP) x y))
   307(Neq(32|64)F x y) => (NotEqual (FCMPU x y))
   308
   309(Less(8|16) x y)  => (LessThan (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   310(Less(32|64) x y) => (LessThan ((CMPW|CMP) x y))
   311(Less(32|64)F x y) => (FLessThan (FCMPU x y))
   312
   313(Less(8|16)U x y)  => (LessThan (CMPWU (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   314(Less(32|64)U x y) => (LessThan ((CMPWU|CMPU) x y))
   315
   316(Leq(8|16) x y)  => (LessEqual (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   317(Leq(32|64) x y) => (LessEqual ((CMPW|CMP) x y))
   318(Leq(32|64)F x y) => (FLessEqual (FCMPU x y))
   319
   320(Leq(8|16)U x y)  => (LessEqual (CMPWU (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   321(Leq(32|64)U x y) => (LessEqual (CMP(WU|U) x y))
   322
   323// Absorb pseudo-ops into blocks.
   324(If (Equal cc) yes no) => (EQ cc yes no)
   325(If (NotEqual cc) yes no) => (NE cc yes no)
   326(If (LessThan cc) yes no) => (LT cc yes no)
   327(If (LessEqual cc) yes no) => (LE cc yes no)
   328(If (GreaterThan cc) yes no) => (GT cc yes no)
   329(If (GreaterEqual cc) yes no) => (GE cc yes no)
   330(If (FLessThan cc) yes no) => (FLT cc yes no)
   331(If (FLessEqual cc) yes no) => (FLE cc yes no)
   332(If (FGreaterThan cc) yes no) => (FGT cc yes no)
   333(If (FGreaterEqual cc) yes no) => (FGE cc yes no)
   334
   335(If cond yes no) => (NE (CMPconst [0] (ANDconst [1] cond)) yes no)
   336
   337// Absorb boolean tests into block
   338(NE (CMPconst [0] (ANDconst [1] ((Equal|NotEqual|LessThan|LessEqual|GreaterThan|GreaterEqual) cc))) yes no) => ((EQ|NE|LT|LE|GT|GE) cc yes no)
   339(NE (CMPconst [0] (ANDconst [1] ((FLessThan|FLessEqual|FGreaterThan|FGreaterEqual) cc))) yes no) => ((FLT|FLE|FGT|FGE) cc yes no)
   340
   341// absorb flag constants into branches
   342(EQ (FlagEQ) yes no) => (First yes no)
   343(EQ (FlagLT) yes no) => (First no yes)
   344(EQ (FlagGT) yes no) => (First no yes)
   345
   346(NE (FlagEQ) yes no) => (First no yes)
   347(NE (FlagLT) yes no) => (First yes no)
   348(NE (FlagGT) yes no) => (First yes no)
   349
   350(LT (FlagEQ) yes no) => (First no yes)
   351(LT (FlagLT) yes no) => (First yes no)
   352(LT (FlagGT) yes no) => (First no yes)
   353
   354(LE (FlagEQ) yes no) => (First yes no)
   355(LE (FlagLT) yes no) => (First yes no)
   356(LE (FlagGT) yes no) => (First no yes)
   357
   358(GT (FlagEQ) yes no) => (First no yes)
   359(GT (FlagLT) yes no) => (First no yes)
   360(GT (FlagGT) yes no) => (First yes no)
   361
   362(GE (FlagEQ) yes no) => (First yes no)
   363(GE (FlagLT) yes no) => (First no yes)
   364(GE (FlagGT) yes no) => (First yes no)
   365
   366// absorb InvertFlags into branches
   367(LT (InvertFlags cmp) yes no) => (GT cmp yes no)
   368(GT (InvertFlags cmp) yes no) => (LT cmp yes no)
   369(LE (InvertFlags cmp) yes no) => (GE cmp yes no)
   370(GE (InvertFlags cmp) yes no) => (LE cmp yes no)
   371(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
   372(NE (InvertFlags cmp) yes no) => (NE cmp yes no)
   373
   374// constant comparisons
   375(CMPWconst (MOVDconst [x]) [y]) && int32(x)==int32(y) => (FlagEQ)
   376(CMPWconst (MOVDconst [x]) [y]) && int32(x)<int32(y)  => (FlagLT)
   377(CMPWconst (MOVDconst [x]) [y]) && int32(x)>int32(y)  => (FlagGT)
   378
   379(CMPconst (MOVDconst [x]) [y]) && x==y => (FlagEQ)
   380(CMPconst (MOVDconst [x]) [y]) && x<y  => (FlagLT)
   381(CMPconst (MOVDconst [x]) [y]) && x>y  => (FlagGT)
   382
   383(CMPWUconst (MOVDconst [x]) [y]) && int32(x)==int32(y)  => (FlagEQ)
   384(CMPWUconst (MOVDconst [x]) [y]) && uint32(x)<uint32(y) => (FlagLT)
   385(CMPWUconst (MOVDconst [x]) [y]) && uint32(x)>uint32(y) => (FlagGT)
   386
   387(CMPUconst (MOVDconst [x]) [y]) && x==y  => (FlagEQ)
   388(CMPUconst (MOVDconst [x]) [y]) && uint64(x)<uint64(y) => (FlagLT)
   389(CMPUconst (MOVDconst [x]) [y]) && uint64(x)>uint64(y) => (FlagGT)
   390
   391// absorb flag constants into boolean values
   392(Equal (FlagEQ)) => (MOVDconst [1])
   393(Equal (FlagLT)) => (MOVDconst [0])
   394(Equal (FlagGT)) => (MOVDconst [0])
   395
   396(NotEqual (FlagEQ)) => (MOVDconst [0])
   397(NotEqual (FlagLT)) => (MOVDconst [1])
   398(NotEqual (FlagGT)) => (MOVDconst [1])
   399
   400(LessThan (FlagEQ)) => (MOVDconst [0])
   401(LessThan (FlagLT)) => (MOVDconst [1])
   402(LessThan (FlagGT)) => (MOVDconst [0])
   403
   404(LessEqual (FlagEQ)) => (MOVDconst [1])
   405(LessEqual (FlagLT)) => (MOVDconst [1])
   406(LessEqual (FlagGT)) => (MOVDconst [0])
   407
   408(GreaterThan (FlagEQ)) => (MOVDconst [0])
   409(GreaterThan (FlagLT)) => (MOVDconst [0])
   410(GreaterThan (FlagGT)) => (MOVDconst [1])
   411
   412(GreaterEqual (FlagEQ)) => (MOVDconst [1])
   413(GreaterEqual (FlagLT)) => (MOVDconst [0])
   414(GreaterEqual (FlagGT)) => (MOVDconst [1])
   415
   416// absorb InvertFlags into boolean values
   417((Equal|NotEqual|LessThan|GreaterThan|LessEqual|GreaterEqual) (InvertFlags x)) => ((Equal|NotEqual|GreaterThan|LessThan|GreaterEqual|LessEqual) x)
   418
   419
   420// Elide compares of bit tests
   421((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(AND x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (ANDCC x y)) yes no)
   422((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(OR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (ORCC x y)) yes no)
   423((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(XOR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (XORCC x y)) yes no)
   424
   425(CondSelect x y (SETBC [a] cmp))  => (ISEL [a] x y cmp)
   426(CondSelect x y (SETBCR [a] cmp))  => (ISEL [a+4] x y cmp)
   427// Only lower after bool is lowered. It should always lower. This helps ensure the folding below happens reliably.
   428(CondSelect x y bool) && flagArg(bool) == nil => (ISEL [6] x y (CMPconst [0] (ANDconst [1] bool)))
   429// Fold any CR -> GPR -> CR transfers when applying the above rule.
   430(ISEL [6] x y (CMPconst [0] (ANDconst [1] (SETBC [c] cmp)))) => (ISEL [c] x y cmp)
   431(ISEL [6] x y ((CMP|CMPW)const [0] (SETBC [c] cmp))) => (ISEL [c] x y cmp)
   432(ISEL [6] x y ((CMP|CMPW)const [0] (SETBCR [c] cmp))) => (ISEL [c+4] x y cmp)
   433
   434// Lowering loads
   435(Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVDload ptr mem)
   436(Load <t> ptr mem) && is32BitInt(t) &&  t.IsSigned() => (MOVWload ptr mem)
   437(Load <t> ptr mem) && is32BitInt(t) && !t.IsSigned() => (MOVWZload ptr mem)
   438(Load <t> ptr mem) && is16BitInt(t) &&  t.IsSigned() => (MOVHload ptr mem)
   439(Load <t> ptr mem) && is16BitInt(t) && !t.IsSigned() => (MOVHZload ptr mem)
   440(Load <t> ptr mem) && t.IsBoolean() => (MOVBZload ptr mem)
   441(Load <t> ptr mem) && is8BitInt(t) &&  t.IsSigned() => (MOVBreg (MOVBZload ptr mem)) // PPC has no signed-byte load.
   442(Load <t> ptr mem) && is8BitInt(t) && !t.IsSigned() => (MOVBZload ptr mem)
   443
   444(Load <t> ptr mem) && is32BitFloat(t) => (FMOVSload ptr mem)
   445(Load <t> ptr mem) && is64BitFloat(t) => (FMOVDload ptr mem)
   446
   447(Store {t} ptr val mem) && t.Size() == 8 &&  t.IsFloat() => (FMOVDstore ptr val mem)
   448(Store {t} ptr val mem) && t.Size() == 4 &&  t.IsFloat() => (FMOVSstore ptr val mem)
   449(Store {t} ptr val mem) && t.Size() == 8 && !t.IsFloat() => (MOVDstore ptr val mem)
   450(Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVWstore ptr val mem)
   451(Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem)
   452(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
   453
   454// Using Zero instead of LoweredZero allows the
   455// target address to be folded where possible.
   456(Zero [0] _ mem) => mem
   457(Zero [1] destptr mem) => (MOVBstorezero destptr mem)
   458(Zero [2] destptr mem) =>
   459	(MOVHstorezero destptr mem)
   460(Zero [3] destptr mem) =>
   461	(MOVBstorezero [2] destptr
   462		(MOVHstorezero destptr mem))
   463(Zero [4] destptr mem) =>
   464	(MOVWstorezero destptr mem)
   465(Zero [5] destptr mem) =>
   466	(MOVBstorezero [4] destptr
   467        	(MOVWstorezero destptr mem))
   468(Zero [6] destptr mem) =>
   469	(MOVHstorezero [4] destptr
   470		(MOVWstorezero destptr mem))
   471(Zero [7] destptr mem) =>
   472	(MOVBstorezero [6] destptr
   473		(MOVHstorezero [4] destptr
   474			(MOVWstorezero destptr mem)))
   475
   476(Zero [8] {t} destptr mem) => (MOVDstorezero destptr mem)
   477(Zero [12] {t} destptr mem) =>
   478        (MOVWstorezero [8] destptr
   479                (MOVDstorezero [0] destptr mem))
   480(Zero [16] {t} destptr mem) =>
   481       (MOVDstorezero [8] destptr
   482                (MOVDstorezero [0] destptr mem))
   483(Zero [24] {t} destptr mem) =>
   484       (MOVDstorezero [16] destptr
   485               (MOVDstorezero [8] destptr
   486                       (MOVDstorezero [0] destptr mem)))
   487(Zero [32] {t} destptr mem) =>
   488       (MOVDstorezero [24] destptr
   489               (MOVDstorezero [16] destptr
   490                       (MOVDstorezero [8] destptr
   491                               (MOVDstorezero [0] destptr mem))))
   492
   493// Handle cases not handled above
   494// Lowered Short cases do not generate loops, and as a result don't clobber
   495// the address registers or flags.
   496(Zero [s] ptr mem) && buildcfg.GOPPC64 <= 8 && s < 64 => (LoweredZeroShort [s] ptr mem)
   497(Zero [s] ptr mem) && buildcfg.GOPPC64 <= 8 => (LoweredZero [s] ptr mem)
   498(Zero [s] ptr mem) && s < 128 && buildcfg.GOPPC64 >= 9 => (LoweredQuadZeroShort [s] ptr mem)
   499(Zero [s] ptr mem) && buildcfg.GOPPC64 >= 9 => (LoweredQuadZero [s] ptr mem)
   500
   501// moves
   502(Move [0] _ _ mem) => mem
   503(Move [1] dst src mem) => (MOVBstore dst (MOVBZload src mem) mem)
   504(Move [2] dst src mem) =>
   505        (MOVHstore dst (MOVHZload src mem) mem)
   506(Move [4] dst src mem) =>
   507	(MOVWstore dst (MOVWZload src mem) mem)
   508// MOVD for load and store must have offsets that are multiple of 4
   509(Move [8] {t} dst src mem) =>
   510	(MOVDstore dst (MOVDload src mem) mem)
   511(Move [3] dst src mem) =>
   512        (MOVBstore [2] dst (MOVBZload [2] src mem)
   513                (MOVHstore dst (MOVHload src mem) mem))
   514(Move [5] dst src mem) =>
   515        (MOVBstore [4] dst (MOVBZload [4] src mem)
   516                (MOVWstore dst (MOVWZload src mem) mem))
   517(Move [6] dst src mem) =>
   518        (MOVHstore [4] dst (MOVHZload [4] src mem)
   519                (MOVWstore dst (MOVWZload src mem) mem))
   520(Move [7] dst src mem) =>
   521        (MOVBstore [6] dst (MOVBZload [6] src mem)
   522                (MOVHstore [4] dst (MOVHZload [4] src mem)
   523                        (MOVWstore dst (MOVWZload src mem) mem)))
   524
   525// Large move uses a loop. Since the address is computed and the
   526// offset is zero, any alignment can be used.
   527(Move [s] dst src mem) && s > 8 && buildcfg.GOPPC64 <= 8 && logLargeCopy(v, s) =>
   528        (LoweredMove [s] dst src mem)
   529(Move [s] dst src mem) && s > 8 && s <= 64 && buildcfg.GOPPC64 >= 9 =>
   530        (LoweredQuadMoveShort [s] dst src mem)
   531(Move [s] dst src mem) && s > 8 && buildcfg.GOPPC64 >= 9 && logLargeCopy(v, s) =>
   532        (LoweredQuadMove [s] dst src mem)
   533
   534// Calls
   535// Lowering calls
   536(StaticCall ...) => (CALLstatic ...)
   537(ClosureCall ...) => (CALLclosure ...)
   538(InterCall ...) => (CALLinter ...)
   539(TailCall ...) => (CALLtail ...)
   540
   541// Miscellaneous
   542(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
   543(GetCallerSP ...) => (LoweredGetCallerSP ...)
   544(GetCallerPC ...) => (LoweredGetCallerPC ...)
   545(IsNonNil ptr) => (NotEqual (CMPconst [0] ptr))
   546(IsInBounds idx len) => (LessThan (CMPU idx len))
   547(IsSliceInBounds idx len) => (LessEqual (CMPU idx len))
   548(NilCheck ...) => (LoweredNilCheck ...)
   549
   550// Write barrier.
   551(WB ...) => (LoweredWB ...)
   552
   553// Publication barrier as intrinsic
   554(PubBarrier ...) => (LoweredPubBarrier ...)
   555
   556(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
   557(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
   558(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
   559
   560// Optimizations
   561// Note that PPC "logical" immediates come in 0:15 and 16:31 unsigned immediate forms,
   562// so ORconst, XORconst easily expand into a pair.
   563
   564// Include very-large constants in the const-const case.
   565(AND (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&d])
   566(OR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|d])
   567(XOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c^d])
   568(ORN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|^d])
   569(ANDN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&^d])
   570(NOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [^(c|d)])
   571
   572// Discover consts
   573(AND x (MOVDconst [-1])) => x
   574(AND x (MOVDconst [c])) && isU16Bit(c) => (ANDconst [c] x)
   575(XOR x (MOVDconst [c])) && isU32Bit(c) => (XORconst [c] x)
   576(OR x (MOVDconst [c])) && isU32Bit(c) => (ORconst [c] x)
   577
   578// Simplify consts
   579(ANDconst [c] (ANDconst [d] x)) => (ANDconst [c&d] x)
   580(ORconst [c] (ORconst [d] x)) => (ORconst [c|d] x)
   581(XORconst [c] (XORconst [d] x)) => (XORconst [c^d] x)
   582(ANDconst [-1] x) => x
   583(ANDconst [0] _) => (MOVDconst [0])
   584(XORconst [0] x) => x
   585(ORconst [-1] _) => (MOVDconst [-1])
   586(ORconst [0] x) => x
   587
   588// zero-extend of small and => small and
   589(MOVBZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFF => y
   590(MOVHZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y
   591(MOVWZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFFFFFF => y
   592(MOVWZreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0xFFFFFFFF => y
   593
   594// sign extend of small-positive and => small-positive-and
   595(MOVBreg y:(ANDconst [c] _)) && uint64(c) <= 0x7F => y
   596(MOVHreg y:(ANDconst [c] _)) && uint64(c) <= 0x7FFF => y
   597(MOVWreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y // 0xFFFF is largest immediate constant, when regarded as 32-bit is > 0
   598(MOVWreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0x7FFFFFFF => y
   599
   600// small and of zero-extend => either zero-extend or small and
   601(ANDconst [c] y:(MOVBZreg _)) && c&0xFF == 0xFF => y
   602(ANDconst [0xFF] (MOVBreg x)) => (MOVBZreg x)
   603(ANDconst [c] y:(MOVHZreg _))  && c&0xFFFF == 0xFFFF => y
   604(ANDconst [0xFFFF] (MOVHreg x)) => (MOVHZreg x)
   605
   606(AND (MOVDconst [c]) y:(MOVWZreg _))  && c&0xFFFFFFFF == 0xFFFFFFFF => y
   607(AND (MOVDconst [0xFFFFFFFF]) y:(MOVWreg x)) => (MOVWZreg x)
   608// normal case
   609(ANDconst [c] (MOVBZreg x)) => (ANDconst [c&0xFF] x)
   610(ANDconst [c] (MOVHZreg x)) => (ANDconst [c&0xFFFF] x)
   611(ANDconst [c] (MOVWZreg x)) => (ANDconst [c&0xFFFFFFFF] x)
   612
   613// Eliminate unnecessary sign/zero extend following right shift
   614(MOV(B|H|W)Zreg (SRWconst [c] (MOVBZreg x))) => (SRWconst [c] (MOVBZreg x))
   615(MOV(H|W)Zreg (SRWconst [c] (MOVHZreg x))) => (SRWconst [c] (MOVHZreg x))
   616(MOVWZreg (SRWconst [c] (MOVWZreg x))) => (SRWconst [c] (MOVWZreg x))
   617(MOV(B|H|W)reg (SRAWconst [c] (MOVBreg x))) => (SRAWconst [c] (MOVBreg x))
   618(MOV(H|W)reg (SRAWconst [c] (MOVHreg x))) => (SRAWconst [c] (MOVHreg x))
   619(MOVWreg (SRAWconst [c] (MOVWreg x))) => (SRAWconst [c] (MOVWreg x))
   620
   621(MOV(WZ|W)reg (S(R|RA)Wconst [c] x)) && x.Type.Size() <= 32 => (S(R|RA)Wconst [c] x)
   622(MOV(HZ|H)reg (S(R|RA)Wconst [c] x)) && x.Type.Size() <= 16 => (S(R|RA)Wconst [c] x)
   623(MOV(BZ|B)reg (S(R|RA)Wconst [c] x)) && x.Type.Size() == 8 => (S(R|RA)Wconst [c] x)
   624
   625// initial right shift will handle sign/zero extend
   626(MOVBZreg (SRDconst [c] x)) && c>=56 => (SRDconst [c] x)
   627(MOVBreg (SRDconst [c] x)) && c>56 => (SRDconst [c] x)
   628(MOVBreg (SRDconst [c] x)) && c==56 => (SRADconst [c] x)
   629(MOVBreg (SRADconst [c] x)) && c>=56 => (SRADconst [c] x)
   630(MOVBZreg (SRWconst [c] x)) && c>=24 => (SRWconst [c] x)
   631(MOVBreg (SRWconst [c] x)) && c>24 => (SRWconst [c] x)
   632(MOVBreg (SRWconst [c] x)) && c==24 => (SRAWconst [c] x)
   633(MOVBreg (SRAWconst [c] x)) && c>=24 => (SRAWconst [c] x)
   634
   635(MOVHZreg (SRDconst [c] x)) && c>=48 => (SRDconst [c] x)
   636(MOVHreg (SRDconst [c] x)) && c>48 => (SRDconst [c] x)
   637(MOVHreg (SRDconst [c] x)) && c==48 => (SRADconst [c] x)
   638(MOVHreg (SRADconst [c] x)) && c>=48 => (SRADconst [c] x)
   639(MOVHZreg (SRWconst [c] x)) && c>=16 => (SRWconst [c] x)
   640(MOVHreg (SRWconst [c] x)) && c>16 => (SRWconst [c] x)
   641(MOVHreg (SRAWconst [c] x)) && c>=16 => (SRAWconst [c] x)
   642(MOVHreg (SRWconst [c] x)) && c==16 => (SRAWconst [c] x)
   643
   644(MOVWZreg (SRDconst [c] x)) && c>=32 => (SRDconst [c] x)
   645(MOVWreg (SRDconst [c] x)) && c>32 => (SRDconst [c] x)
   646(MOVWreg (SRADconst [c] x)) && c>=32 => (SRADconst [c] x)
   647(MOVWreg (SRDconst [c] x)) && c==32 => (SRADconst [c] x)
   648
   649// Various redundant zero/sign extension combinations.
   650(MOVBZreg y:(MOVBZreg _)) => y  // repeat
   651(MOVBreg y:(MOVBreg _)) => y // repeat
   652(MOVBreg (MOVBZreg x)) => (MOVBreg x)
   653(MOVBZreg (MOVBreg x)) => (MOVBZreg x)
   654
   655// Catch any remaining rotate+shift cases
   656(MOVBZreg (SRWconst x [s])) && mergePPC64AndSrwi(0xFF,s) != 0 => (RLWINM [mergePPC64AndSrwi(0xFF,s)] x)
   657(MOVBZreg (RLWINM [r] y)) && mergePPC64AndRlwinm(0xFF,r) != 0 => (RLWINM [mergePPC64AndRlwinm(0xFF,r)] y)
   658(MOVHZreg (RLWINM [r] y)) && mergePPC64AndRlwinm(0xFFFF,r) != 0 => (RLWINM [mergePPC64AndRlwinm(0xFFFF,r)] y)
   659(MOVWZreg (RLWINM [r] y)) && mergePPC64MovwzregRlwinm(r) != 0 => (RLWINM [mergePPC64MovwzregRlwinm(r)] y)
   660(ANDconst [m] (RLWINM [r] y)) && mergePPC64AndRlwinm(uint32(m),r) != 0 => (RLWINM [mergePPC64AndRlwinm(uint32(m),r)] y)
   661(SLDconst [s] (RLWINM [r] y)) && mergePPC64SldiRlwinm(s,r) != 0 => (RLWINM [mergePPC64SldiRlwinm(s,r)] y)
   662(RLWINM [r] (MOVHZreg u)) && mergePPC64RlwinmAnd(r,0xFFFF) != 0 => (RLWINM [mergePPC64RlwinmAnd(r,0xFFFF)] u)
   663(RLWINM [r] (ANDconst [a] u)) && mergePPC64RlwinmAnd(r,uint32(a)) != 0 => (RLWINM [mergePPC64RlwinmAnd(r,uint32(a))] u)
   664// SLWconst is a special case of RLWNM which always zero-extends the result.
   665(SLWconst [s] (MOVWZreg w)) => (SLWconst [s] w)
   666(MOVWZreg w:(SLWconst u)) => w
   667
   668// H - there are more combinations than these
   669
   670(MOVHZreg y:(MOV(H|B)Zreg _)) => y // repeat
   671(MOVHZreg y:(MOVHBRload _ _)) => y
   672
   673(MOVHreg y:(MOV(H|B)reg _)) => y // repeat
   674
   675(MOV(H|HZ)reg y:(MOV(HZ|H)reg x)) => (MOV(H|HZ)reg x)
   676
   677// W - there are more combinations than these
   678
   679(MOV(WZ|WZ|WZ|W|W|W)reg y:(MOV(WZ|HZ|BZ|W|H|B)reg _)) => y // repeat
   680(MOVWZreg y:(MOV(H|W)BRload _ _)) => y
   681
   682(MOV(W|WZ)reg y:(MOV(WZ|W)reg x)) => (MOV(W|WZ)reg x)
   683
   684// Truncate then logical then truncate: omit first, lesser or equal truncate
   685(MOVWZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVWZreg ((OR|XOR|AND) <t> x y))
   686(MOVHZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVHZreg ((OR|XOR|AND) <t> x y))
   687(MOVHZreg ((OR|XOR|AND) <t> x (MOVHZreg y))) => (MOVHZreg ((OR|XOR|AND) <t> x y))
   688(MOVBZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   689(MOVBZreg ((OR|XOR|AND) <t> x (MOVHZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   690(MOVBZreg ((OR|XOR|AND) <t> x (MOVBZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   691
   692(MOV(B|H|W)Zreg z:(ANDconst [c] (MOVBZload ptr x))) => z
   693(MOV(B|H|W)Zreg z:(AND y (MOV(B|H|W)Zload ptr x))) => z
   694(MOV(H|W)Zreg z:(ANDconst [c] (MOVHZload ptr x))) => z
   695(MOVWZreg z:(ANDconst [c] (MOVWZload ptr x))) => z
   696
   697// Arithmetic constant ops
   698
   699(ADD x (MOVDconst <t> [c])) && is32Bit(c) && !t.IsPtr() => (ADDconst [c] x)
   700(ADDconst [c] (ADDconst [d] x)) && is32Bit(c+d) => (ADDconst [c+d] x)
   701(ADDconst [0] x) => x
   702(SUB x (MOVDconst [c])) && is32Bit(-c) => (ADDconst [-c] x)
   703
   704(ADDconst [c] (MOVDaddr [d] {sym} x)) && is32Bit(c+int64(d)) => (MOVDaddr [int32(c+int64(d))] {sym} x)
   705(ADDconst [c] x:(SP)) && is32Bit(c) => (MOVDaddr [int32(c)] x) // so it is rematerializeable
   706
   707(MULL(W|D) x (MOVDconst [c])) && is16Bit(c) => (MULL(W|D)const [int32(c)] x)
   708
   709// Subtract from (with carry, but ignored) constant.
   710// Note, these clobber the carry bit.
   711(SUB (MOVDconst [c]) x) && is32Bit(c) => (SUBFCconst [c] x)
   712(SUBFCconst [c] (NEG x)) => (ADDconst [c] x)
   713(SUBFCconst [c] (SUBFCconst [d] x)) && is32Bit(c-d) => (ADDconst [c-d] x)
   714(SUBFCconst [0] x) => (NEG x)
   715(ADDconst [c] (SUBFCconst [d] x)) && is32Bit(c+d) => (SUBFCconst [c+d] x)
   716(NEG (ADDconst [c] x)) && is32Bit(-c) => (SUBFCconst [-c] x)
   717(NEG (SUBFCconst [c] x)) && is32Bit(-c) => (ADDconst [-c] x)
   718(NEG (SUB x y)) => (SUB y x)
   719(NEG (NEG x)) => x
   720
   721// Use register moves instead of stores and loads to move int<=>float values
   722// Common with math Float64bits, Float64frombits
   723(MOVDload [off] {sym} ptr (FMOVDstore [off] {sym} ptr x _)) => (MFVSRD x)
   724(FMOVDload [off] {sym} ptr (MOVDstore [off] {sym} ptr x _)) => (MTVSRD x)
   725
   726(FMOVDstore [off] {sym} ptr (MTVSRD x) mem) => (MOVDstore [off] {sym} ptr x mem)
   727(MOVDstore [off] {sym} ptr (MFVSRD x) mem) => (FMOVDstore [off] {sym} ptr x mem)
   728
   729(MTVSRD (MOVDconst [c])) && !math.IsNaN(math.Float64frombits(uint64(c))) => (FMOVDconst [math.Float64frombits(uint64(c))])
   730(MFVSRD (FMOVDconst [c])) => (MOVDconst [int64(math.Float64bits(c))])
   731
   732(MTVSRD x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (FMOVDload [off] {sym} ptr mem)
   733(MFVSRD x:(FMOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVDload [off] {sym} ptr mem)
   734
   735// Rules for MOV* or FMOV* ops determine when indexed (MOV*loadidx or MOV*storeidx)
   736// or non-indexed (MOV*load or MOV*store) should be used. Indexed instructions
   737// require an extra instruction and register to load the index so non-indexed is preferred.
   738// Indexed ops generate indexed load or store instructions for all GOPPC64 values.
   739// Non-indexed ops generate DS-form loads and stores when the offset fits in 16 bits,
   740// and on power8 and power9, a multiple of 4 is required for MOVW and MOVD ops.
   741// On power10, prefixed loads and stores can be used for offsets > 16 bits and <= 32 bits.
   742// and support for PC relative addressing must be available if relocation is needed.
   743// On power10, the assembler will determine when to use DS-form or prefixed
   744// instructions for non-indexed ops depending on the value of the offset.
   745//
   746// Fold offsets for stores.
   747(MOV(D|W|H|B)store [off1] {sym} (ADDconst [off2] x) val mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (MOV(D|W|H|B)store [off1+int32(off2)] {sym} x val mem)
   748
   749(FMOV(S|D)store [off1] {sym} (ADDconst [off2] ptr) val mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (FMOV(S|D)store [off1+int32(off2)] {sym} ptr val mem)
   750
   751// Fold address into load/store.
   752// If power10 with PCRel is not available, then
   753// the assembler needs to generate several instructions and use
   754// temp register for accessing global, and each time it will reload
   755// the temp register. So don't fold address of global in that case if there is more than
   756// one use.
   757(MOV(B|H|W|D)store [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
   758	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   759        (MOV(B|H|W|D)store [off1+off2] {mergeSym(sym1,sym2)} ptr val mem)
   760
   761(FMOV(S|D)store [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
   762	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   763        (FMOV(S|D)store [off1+off2] {mergeSym(sym1,sym2)} ptr val mem)
   764
   765(MOV(B|H|W)Zload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   766	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   767        (MOV(B|H|W)Zload [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   768(MOV(H|W|D)load [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   769	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   770        (MOV(H|W|D)load [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   771(FMOV(S|D)load [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   772	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   773        (FMOV(S|D)load [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   774
   775// Fold offsets for loads.
   776(FMOV(S|D)load [off1] {sym} (ADDconst [off2] ptr) mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (FMOV(S|D)load [off1+int32(off2)] {sym} ptr mem)
   777
   778(MOV(D|W|WZ|H|HZ|BZ)load [off1] {sym} (ADDconst [off2] x) mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (MOV(D|W|WZ|H|HZ|BZ)load [off1+int32(off2)] {sym} x mem)
   779
   780// Determine load + addressing that can be done as a register indexed load
   781(MOV(D|W|WZ|H|HZ|BZ)load [0] {sym} p:(ADD ptr idx) mem) && sym == nil && p.Uses == 1 => (MOV(D|W|WZ|H|HZ|BZ)loadidx ptr idx mem)
   782
   783// See comments above concerning selection of indexed vs. non-indexed ops.
   784// These cases don't have relocation.
   785(MOV(D|W)loadidx ptr (MOVDconst [c]) mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(D|W)load [int32(c)] ptr mem)
   786(MOV(WZ|H|HZ|BZ)loadidx ptr (MOVDconst [c]) mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
   787(MOV(D|W)loadidx (MOVDconst [c]) ptr mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(D|W)load [int32(c)] ptr mem)
   788(MOV(WZ|H|HZ|BZ)loadidx (MOVDconst [c]) ptr mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
   789
   790// Store of zero => storezero
   791(MOV(D|W|H|B)store [off] {sym} ptr (MOVDconst [0]) mem) => (MOV(D|W|H|B)storezero [off] {sym} ptr mem)
   792
   793// Fold offsets for storezero
   794(MOV(D|W|H|B)storezero [off1] {sym} (ADDconst [off2] x) mem) && ((supportsPPC64PCRel() && is32Bit(int64(off1)+off2)) || (is16Bit(int64(off1)+off2))) =>
   795    (MOV(D|W|H|B)storezero [off1+int32(off2)] {sym} x mem)
   796
   797// Stores with addressing that can be done as indexed stores
   798(MOV(D|W|H|B)store [0] {sym} p:(ADD ptr idx) val mem) && sym == nil && p.Uses == 1 => (MOV(D|W|H|B)storeidx ptr idx val mem)
   799
   800(MOVDstoreidx ptr (MOVDconst [c]) val mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOVDstore [int32(c)] ptr val mem)
   801(MOV(W|H|B)storeidx ptr (MOVDconst [c]) val mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(W|H|B)store [int32(c)] ptr val mem)
   802(MOVDstoreidx (MOVDconst [c]) ptr val mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOVDstore [int32(c)] ptr val mem)
   803(MOV(W|H|B)storeidx (MOVDconst [c]) ptr val mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(W|H|B)store [int32(c)] ptr val mem)
   804
   805// Fold symbols into storezero
   806(MOV(D|W|H|B)storezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
   807	&& ((is16Bit(int64(off1+off2)) && (x.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   808    (MOV(D|W|H|B)storezero [off1+off2] {mergeSym(sym1,sym2)} x mem)
   809
   810// atomic intrinsics
   811(AtomicLoad(8|32|64|Ptr)  ptr mem) => (LoweredAtomicLoad(8|32|64|Ptr) [1] ptr mem)
   812(AtomicLoadAcq(32|64)     ptr mem) => (LoweredAtomicLoad(32|64) [0] ptr mem)
   813
   814(AtomicStore(8|32|64)    ptr val mem) => (LoweredAtomicStore(8|32|64) [1] ptr val mem)
   815(AtomicStoreRel(32|64)   ptr val mem) => (LoweredAtomicStore(32|64) [0] ptr val mem)
   816
   817(AtomicExchange(8|32|64) ...) => (LoweredAtomicExchange(8|32|64) ...)
   818
   819(AtomicAdd(32|64) ...) => (LoweredAtomicAdd(32|64) ...)
   820
   821(AtomicCompareAndSwap(32|64) ptr old new_ mem) => (LoweredAtomicCas(32|64) [1] ptr old new_ mem)
   822(AtomicCompareAndSwapRel32   ptr old new_ mem) => (LoweredAtomicCas32 [0] ptr old new_ mem)
   823
   824(AtomicAnd(8|32)  ...) => (LoweredAtomicAnd(8|32)  ...)
   825(AtomicOr(8|32)   ...) => (LoweredAtomicOr(8|32)   ...)
   826
   827(Slicemask <t> x) => (SRADconst (NEG <t> x) [63])
   828(ANDconst [1] z:(SRADconst [63] x)) && z.Uses == 1  => (SRDconst [63] x)
   829
   830// Note that MOV??reg returns a 64-bit int, x is not necessarily that wide
   831// This may interact with other patterns in the future. (Compare with arm64)
   832(MOV(B|H|W)Zreg x:(MOVBZload _ _)) => x
   833(MOV(B|H|W)Zreg x:(MOVBZloadidx _ _ _)) => x
   834(MOV(H|W)Zreg x:(MOVHZload _ _)) => x
   835(MOV(H|W)Zreg x:(MOVHZloadidx _ _ _)) => x
   836(MOV(H|W)reg x:(MOVHload _ _)) => x
   837(MOV(H|W)reg x:(MOVHloadidx _ _ _)) => x
   838(MOV(WZ|W)reg x:(MOV(WZ|W)load _ _)) => x
   839(MOV(WZ|W)reg x:(MOV(WZ|W)loadidx _ _ _)) => x
   840(MOV(B|W)Zreg x:(Select0 (LoweredAtomicLoad(8|32) _ _))) => x
   841
   842// don't extend if argument is already extended
   843(MOVBreg x:(Arg <t>)) && is8BitInt(t) && t.IsSigned() => x
   844(MOVBZreg x:(Arg <t>)) && is8BitInt(t) && !t.IsSigned() => x
   845(MOVHreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && t.IsSigned() => x
   846(MOVHZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && !t.IsSigned() => x
   847(MOVWreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && t.IsSigned() => x
   848(MOVWZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && !t.IsSigned() => x
   849
   850(MOVBZreg (MOVDconst [c]))  => (MOVDconst [int64(uint8(c))])
   851(MOVBreg (MOVDconst [c]))  => (MOVDconst [int64(int8(c))])
   852(MOVHZreg (MOVDconst [c]))  => (MOVDconst [int64(uint16(c))])
   853(MOVHreg (MOVDconst [c]))  => (MOVDconst [int64(int16(c))])
   854(MOVWreg (MOVDconst [c])) => (MOVDconst [int64(int32(c))])
   855(MOVWZreg (MOVDconst [c])) => (MOVDconst [int64(uint32(c))])
   856
   857// Implement clrsldi and clrslwi extended mnemonics as described in
   858// ISA 3.0 section C.8. AuxInt field contains values needed for
   859// the instructions, packed together since there is only one available.
   860(SLDconst [c] z:(MOVBZreg x)) && c < 8 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,56,63,64)] x)
   861(SLDconst [c] z:(MOVHZreg x)) && c < 16 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,48,63,64)] x)
   862(SLDconst [c] z:(MOVWZreg x)) && c < 32 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,32,63,64)] x)
   863
   864(SLDconst [c] z:(ANDconst [d] x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c <= (64-getPPC64ShiftMaskLength(d)) => (CLRLSLDI [newPPC64ShiftAuxInt(c,64-getPPC64ShiftMaskLength(d),63,64)] x)
   865(SLDconst [c] z:(AND (MOVDconst [d]) x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(64-getPPC64ShiftMaskLength(d)) => (CLRLSLDI [newPPC64ShiftAuxInt(c,64-getPPC64ShiftMaskLength(d),63,64)] x)
   866(SLWconst [c] z:(MOVBZreg x)) && z.Uses == 1 && c < 8 => (CLRLSLWI [newPPC64ShiftAuxInt(c,24,31,32)] x)
   867(SLWconst [c] z:(MOVHZreg x)) && z.Uses == 1 && c < 16 => (CLRLSLWI [newPPC64ShiftAuxInt(c,16,31,32)] x)
   868(SLWconst [c] z:(ANDconst [d] x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(32-getPPC64ShiftMaskLength(d)) => (CLRLSLWI [newPPC64ShiftAuxInt(c,32-getPPC64ShiftMaskLength(d),31,32)] x)
   869(SLWconst [c] z:(AND (MOVDconst [d]) x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(32-getPPC64ShiftMaskLength(d)) => (CLRLSLWI [newPPC64ShiftAuxInt(c,32-getPPC64ShiftMaskLength(d),31,32)] x)
   870// special case for power9
   871(SL(W|D)const [c] z:(MOVWreg x)) && c < 32 && buildcfg.GOPPC64 >= 9 => (EXTSWSLconst [c] x)
   872
   873// Lose widening ops fed to stores
   874(MOVBstore [off] {sym} ptr (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstore [off] {sym} ptr x mem)
   875(MOVHstore [off] {sym} ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstore [off] {sym} ptr x mem)
   876(MOVWstore [off] {sym} ptr (MOV(W|WZ)reg x) mem) => (MOVWstore [off] {sym} ptr x mem)
   877(MOVBstore [off] {sym} ptr (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
   878(MOVBstore [off] {sym} ptr (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
   879(MOVBstoreidx ptr idx (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstoreidx ptr idx x mem)
   880(MOVHstoreidx ptr idx (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstoreidx ptr idx x mem)
   881(MOVWstoreidx ptr idx (MOV(W|WZ)reg x) mem) => (MOVWstoreidx ptr idx x mem)
   882(MOVBstoreidx ptr idx (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
   883(MOVBstoreidx ptr idx (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
   884(MOVHBRstore ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHBRstore ptr x mem)
   885(MOVWBRstore ptr (MOV(W|WZ)reg x) mem) => (MOVWBRstore ptr x mem)
   886
   887// Lose W-widening ops fed to compare-W
   888(CMP(W|WU) x (MOV(W|WZ)reg y)) => (CMP(W|WU) x y)
   889(CMP(W|WU) (MOV(W|WZ)reg x) y) => (CMP(W|WU) x y)
   890
   891(CMP x (MOVDconst [c])) && is16Bit(c) => (CMPconst x [c])
   892(CMP (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPconst y [c]))
   893(CMPW x (MOVDconst [c])) && is16Bit(c) => (CMPWconst x [int32(c)])
   894(CMPW (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPWconst y [int32(c)]))
   895
   896(CMPU x (MOVDconst [c])) && isU16Bit(c) => (CMPUconst x [c])
   897(CMPU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPUconst y [c]))
   898(CMPWU x (MOVDconst [c])) && isU16Bit(c) => (CMPWUconst x [int32(c)])
   899(CMPWU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPWUconst y [int32(c)]))
   900
   901// Canonicalize the order of arguments to comparisons - helps with CSE.
   902((CMP|CMPW|CMPU|CMPWU) x y) && canonLessThan(x,y) => (InvertFlags ((CMP|CMPW|CMPU|CMPWU) y x))
   903
   904// n is always a zero-extended uint16 value, so n & z is always a non-negative 32 or 64 bit value.
   905// Rewrite to a cmp int64(0) to lower into ANDCCconst in the latelower pass.
   906(CMP(W|U|WU)const [0] a:(ANDconst [n] z)) => (CMPconst [0] a)
   907
   908// SETBC auxInt values 0=LT 1=GT 2=EQ   Crbit==1 ? 1 : 0
   909// SETBCR auxInt values 0=LT 1=GT 2=EQ   Crbit==1 ? 0 : 1
   910(Equal cmp) => (SETBC [2] cmp)
   911(NotEqual cmp) => (SETBCR [2] cmp)
   912(LessThan cmp) => (SETBC [0] cmp)
   913(FLessThan cmp) => (SETBC [0] cmp)
   914(FLessEqual cmp) => (OR (SETBC [2] cmp) (SETBC [0] cmp))
   915(GreaterEqual cmp) => (SETBCR [0] cmp)
   916(GreaterThan cmp)  => (SETBC [1] cmp)
   917(FGreaterEqual cmp) => (OR (SETBC [2] cmp) (SETBC [1] cmp))
   918(FGreaterThan cmp)  => (SETBC [1] cmp)
   919(LessEqual cmp) => (SETBCR [1] cmp)
   920
   921(SETBC [0] (FlagLT)) => (MOVDconst [1])
   922(SETBC [0] (Flag(GT|EQ))) => (MOVDconst [0])
   923(SETBC [1] (FlagGT)) => (MOVDconst [1])
   924(SETBC [1] (Flag(LT|EQ))) => (MOVDconst [0])
   925(SETBC [2] (FlagEQ)) => (MOVDconst [1])
   926(SETBC [2] (Flag(LT|GT))) => (MOVDconst [0])
   927
   928(SETBCR [0] (FlagLT)) => (MOVDconst [0])
   929(SETBCR [0] (Flag(GT|EQ))) => (MOVDconst [1])
   930(SETBCR [1] (FlagGT)) => (MOVDconst [0])
   931(SETBCR [1] (Flag(LT|EQ))) => (MOVDconst [1])
   932(SETBCR [2] (FlagEQ)) => (MOVDconst [0])
   933(SETBCR [2] (Flag(LT|GT))) => (MOVDconst [1])
   934
   935(SETBC [0] (InvertFlags bool)) => (SETBC [1] bool)
   936(SETBC [1] (InvertFlags bool)) => (SETBC [0] bool)
   937(SETBC [2] (InvertFlags bool)) => (SETBC [2] bool)
   938
   939(SETBCR [0] (InvertFlags bool)) => (SETBCR [1] bool)
   940(SETBCR [1] (InvertFlags bool)) => (SETBCR [0] bool)
   941(SETBCR [2] (InvertFlags bool)) => (SETBCR [2] bool)
   942
   943// ISEL auxInt values 0=LT 1=GT 2=EQ   arg2 ? arg0 : arg1
   944// ISEL auxInt values 4=GE 5=LE 6=NE   !arg2 ? arg1 : arg0
   945
   946(ISEL [2] x _ (FlagEQ)) => x
   947(ISEL [2] _ y (Flag(LT|GT))) => y
   948
   949(ISEL [6] _ y (FlagEQ)) => y
   950(ISEL [6] x _ (Flag(LT|GT))) => x
   951
   952(ISEL [0] _ y (Flag(EQ|GT))) => y
   953(ISEL [0] x _ (FlagLT)) => x
   954
   955(ISEL [5] _ x (Flag(EQ|LT))) => x
   956(ISEL [5] y _ (FlagGT)) => y
   957
   958(ISEL [1] _ y (Flag(EQ|LT))) => y
   959(ISEL [1] x _ (FlagGT)) => x
   960
   961(ISEL [4] x _ (Flag(EQ|GT))) => x
   962(ISEL [4] _ y (FlagLT)) => y
   963
   964(SETBC [n] (InvertFlags bool)) => (SETBCR [n] bool)
   965(SETBCR [n] (InvertFlags bool)) => (SETBC [n] bool)
   966
   967(ISEL [n] x y (InvertFlags bool)) && n%4 == 0 => (ISEL [n+1] x y bool)
   968(ISEL [n] x y (InvertFlags bool)) && n%4 == 1 => (ISEL [n-1] x y bool)
   969(ISEL [n] x y (InvertFlags bool)) && n%4 == 2 => (ISEL [n] x y bool)
   970(XORconst [1] (SETBCR [n] cmp)) => (SETBC [n] cmp)
   971(XORconst [1] (SETBC [n] cmp)) => (SETBCR [n] cmp)
   972
   973(SETBC  [2] (CMPconst [0] a:(ANDconst [1] _))) => (XORconst [1] a)
   974(SETBCR [2] (CMPconst [0] a:(ANDconst [1] _))) => a
   975
   976// Only CMPconst for these in case AND|OR|XOR result is > 32 bits
   977(SETBC [2] (CMPconst [0] a:(AND y z))) && a.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (ANDCC y z )))
   978(SETBCR [2] (CMPconst [0] a:(AND y z))) && a.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (ANDCC y z )))
   979
   980(SETBC [2] (CMPconst [0] o:(OR y z))) && o.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (ORCC y z )))
   981(SETBCR [2] (CMPconst [0] o:(OR y z))) && o.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (ORCC y z )))
   982
   983(SETBC [2] (CMPconst [0] a:(XOR y z))) && a.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (XORCC y z )))
   984(SETBCR [2] (CMPconst [0] a:(XOR y z))) && a.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (XORCC y z )))
   985
   986// A particular pattern seen in cgo code:
   987(AND (MOVDconst [c]) x:(MOVBZload _ _)) => (ANDconst [c&0xFF] x)
   988
   989// floating point negative abs
   990(FNEG (F(ABS|NABS) x)) => (F(NABS|ABS) x)
   991
   992// floating-point fused multiply-add/sub
   993(F(ADD|SUB) (FMUL x y) z) && x.Block.Func.useFMA(v) => (FM(ADD|SUB) x y z)
   994(F(ADDS|SUBS) (FMULS x y) z) && x.Block.Func.useFMA(v) => (FM(ADDS|SUBS) x y z)
   995
   996// Arch-specific inlining for small or disjoint runtime.memmove
   997(SelectN [0] call:(CALLstatic {sym} s1:(MOVDstore _ (MOVDconst [sz]) s2:(MOVDstore  _ src s3:(MOVDstore {t} _ dst mem)))))
   998        && sz >= 0
   999        && isSameCall(sym, "runtime.memmove")
  1000        && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
  1001        && isInlinableMemmove(dst, src, sz, config)
  1002        && clobber(s1, s2, s3, call)
  1003        => (Move [sz] dst src mem)
  1004
  1005// Match post-lowering calls, register version.
  1006(SelectN [0] call:(CALLstatic {sym} dst src (MOVDconst [sz]) mem))
  1007        && sz >= 0
  1008        && isSameCall(sym, "runtime.memmove")
  1009        && call.Uses == 1
  1010        && isInlinableMemmove(dst, src, sz, config)
  1011        && clobber(call)
  1012        => (Move [sz] dst src mem)
  1013
  1014// Prefetch instructions (TH specified using aux field)
  1015// For DCBT Ra,Rb,TH, A value of TH indicates:
  1016//     0, hint this cache line will be used soon. (PrefetchCache)
  1017//     16, hint this cache line will not be used for long. (PrefetchCacheStreamed)
  1018// See ISA 3.0 Book II 4.3.2 for more detail. https://openpower.foundation/specifications/isa/
  1019(PrefetchCache ptr mem)          => (DCBT ptr mem [0])
  1020(PrefetchCacheStreamed ptr mem)  => (DCBT ptr mem [16])
  1021
  1022// Use byte reverse instructions on Power10
  1023(Bswap(16|32|64) x) && buildcfg.GOPPC64>=10 => (BR(H|W|D) x)
  1024
  1025// Fold bit reversal into loads.
  1026(BR(W|H) x:(MOV(W|H)Zload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOV(W|H)BRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1027(BR(W|H) x:(MOV(W|H)Zloadidx ptr idx      mem)) && x.Uses == 1 => @x.Block (MOV(W|H)BRloadidx ptr idx mem)
  1028(BRD x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOVDBRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1029(BRD x:(MOVDloadidx ptr idx      mem)) && x.Uses == 1 => @x.Block (MOVDBRloadidx ptr idx mem)
  1030
  1031// Fold bit reversal into stores.
  1032(MOV(D|W|H)store [off] {sym} ptr r:(BR(D|W|H) val) mem) && r.Uses == 1 => (MOV(D|W|H)BRstore (MOVDaddr <ptr.Type> [off] {sym} ptr) val mem)
  1033(MOV(D|W|H)storeidx ptr idx      r:(BR(D|W|H) val) mem) && r.Uses == 1 => (MOV(D|W|H)BRstoreidx ptr idx val mem)
  1034
  1035// GOPPC64<10 rules.
  1036// These Bswap operations should only be introduced by the memcombine pass in places where they can be folded into loads or stores.
  1037(Bswap(32|16) x:(MOV(W|H)Zload [off] {sym} ptr mem)) => @x.Block (MOV(W|H)BRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1038(Bswap(32|16) x:(MOV(W|H)Zloadidx ptr idx      mem)) => @x.Block (MOV(W|H)BRloadidx ptr idx mem)
  1039(Bswap64 x:(MOVDload [off] {sym} ptr mem)) => @x.Block (MOVDBRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1040(Bswap64 x:(MOVDloadidx ptr idx      mem)) => @x.Block (MOVDBRloadidx ptr idx mem)
  1041(MOV(D|W|H)store [off] {sym} ptr (Bswap(64|32|16) val) mem) => (MOV(D|W|H)BRstore (MOVDaddr <ptr.Type> [off] {sym} ptr) val mem)
  1042(MOV(D|W|H)storeidx ptr idx      (Bswap(64|32|16) val) mem) => (MOV(D|W|H)BRstoreidx ptr idx val mem)

View as plain text