...

Text file src/cmd/compile/internal/ssa/_gen/generic.rules

Documentation: cmd/compile/internal/ssa/_gen

     1// Copyright 2015 The Go Authors. All rights reserved.
     2// Use of this source code is governed by a BSD-style
     3// license that can be found in the LICENSE file.
     4
     5// Simplifications that apply to all backend architectures. As an example, this
     6// Go source code
     7//
     8// y := 0 * x
     9//
    10// can be translated into y := 0 without losing any information, which saves a
    11// pointless multiplication instruction. Other .rules files in this directory
    12// (for example AMD64.rules) contain rules specific to the architecture in the
    13// filename. The rules here apply to every architecture.
    14//
    15// The code for parsing this file lives in rulegen.go; this file generates
    16// ssa/rewritegeneric.go.
    17
    18// values are specified using the following format:
    19// (op <type> [auxint] {aux} arg0 arg1 ...)
    20// the type, aux, and auxint fields are optional
    21// on the matching side
    22//  - the type, aux, and auxint fields must match if they are specified.
    23//  - the first occurrence of a variable defines that variable.  Subsequent
    24//    uses must match (be == to) the first use.
    25//  - v is defined to be the value matched.
    26//  - an additional conditional can be provided after the match pattern with "&&".
    27// on the generated side
    28//  - the type of the top-level expression is the same as the one on the left-hand side.
    29//  - the type of any subexpressions must be specified explicitly (or
    30//    be specified in the op's type field).
    31//  - auxint will be 0 if not specified.
    32//  - aux will be nil if not specified.
    33
    34// blocks are specified using the following format:
    35// (kind controlvalue succ0 succ1 ...)
    36// controlvalue must be "nil" or a value expression
    37// succ* fields must be variables
    38// For now, the generated successors must be a permutation of the matched successors.
    39
    40// constant folding
    41(Trunc16to8  (Const16  [c])) => (Const8   [int8(c)])
    42(Trunc32to8  (Const32  [c])) => (Const8   [int8(c)])
    43(Trunc32to16 (Const32  [c])) => (Const16  [int16(c)])
    44(Trunc64to8  (Const64  [c])) => (Const8   [int8(c)])
    45(Trunc64to16 (Const64  [c])) => (Const16  [int16(c)])
    46(Trunc64to32 (Const64  [c])) => (Const32  [int32(c)])
    47(Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
    48(Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
    49(Cvt32to32F  (Const32  [c])) => (Const32F [float32(c)])
    50(Cvt32to64F  (Const32  [c])) => (Const64F [float64(c)])
    51(Cvt64to32F  (Const64  [c])) => (Const32F [float32(c)])
    52(Cvt64to64F  (Const64  [c])) => (Const64F [float64(c)])
    53(Cvt32Fto32  (Const32F [c])) => (Const32  [int32(c)])
    54(Cvt32Fto64  (Const32F [c])) => (Const64  [int64(c)])
    55(Cvt64Fto32  (Const64F [c])) => (Const32  [int32(c)])
    56(Cvt64Fto64  (Const64F [c])) => (Const64  [int64(c)])
    57(Round32F x:(Const32F)) => x
    58(Round64F x:(Const64F)) => x
    59(CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
    60(CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
    61
    62(Trunc16to8  (ZeroExt8to16  x)) => x
    63(Trunc32to8  (ZeroExt8to32  x)) => x
    64(Trunc32to16 (ZeroExt8to32  x)) => (ZeroExt8to16  x)
    65(Trunc32to16 (ZeroExt16to32 x)) => x
    66(Trunc64to8  (ZeroExt8to64  x)) => x
    67(Trunc64to16 (ZeroExt8to64  x)) => (ZeroExt8to16  x)
    68(Trunc64to16 (ZeroExt16to64 x)) => x
    69(Trunc64to32 (ZeroExt8to64  x)) => (ZeroExt8to32  x)
    70(Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
    71(Trunc64to32 (ZeroExt32to64 x)) => x
    72(Trunc16to8  (SignExt8to16  x)) => x
    73(Trunc32to8  (SignExt8to32  x)) => x
    74(Trunc32to16 (SignExt8to32  x)) => (SignExt8to16  x)
    75(Trunc32to16 (SignExt16to32 x)) => x
    76(Trunc64to8  (SignExt8to64  x)) => x
    77(Trunc64to16 (SignExt8to64  x)) => (SignExt8to16  x)
    78(Trunc64to16 (SignExt16to64 x)) => x
    79(Trunc64to32 (SignExt8to64  x)) => (SignExt8to32  x)
    80(Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
    81(Trunc64to32 (SignExt32to64 x)) => x
    82
    83(ZeroExt8to16  (Const8  [c])) => (Const16 [int16( uint8(c))])
    84(ZeroExt8to32  (Const8  [c])) => (Const32 [int32( uint8(c))])
    85(ZeroExt8to64  (Const8  [c])) => (Const64 [int64( uint8(c))])
    86(ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
    87(ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
    88(ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
    89(SignExt8to16  (Const8  [c])) => (Const16 [int16(c)])
    90(SignExt8to32  (Const8  [c])) => (Const32 [int32(c)])
    91(SignExt8to64  (Const8  [c])) => (Const64 [int64(c)])
    92(SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
    93(SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
    94(SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
    95
    96(Neg8   (Const8   [c])) => (Const8   [-c])
    97(Neg16  (Const16  [c])) => (Const16  [-c])
    98(Neg32  (Const32  [c])) => (Const32  [-c])
    99(Neg64  (Const64  [c])) => (Const64  [-c])
   100(Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
   101(Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
   102
   103(Add8   (Const8 [c])   (Const8 [d]))   => (Const8  [c+d])
   104(Add16  (Const16 [c])  (Const16 [d]))  => (Const16 [c+d])
   105(Add32  (Const32 [c])  (Const32 [d]))  => (Const32 [c+d])
   106(Add64  (Const64 [c])  (Const64 [d]))  => (Const64 [c+d])
   107(Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
   108(Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
   109(AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
   110(AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
   111
   112(Sub8   (Const8 [c]) (Const8 [d]))     => (Const8 [c-d])
   113(Sub16  (Const16 [c]) (Const16 [d]))   => (Const16 [c-d])
   114(Sub32  (Const32 [c]) (Const32 [d]))   => (Const32 [c-d])
   115(Sub64  (Const64 [c]) (Const64 [d]))   => (Const64 [c-d])
   116(Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
   117(Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
   118
   119(Mul8   (Const8 [c])   (Const8 [d]))   => (Const8  [c*d])
   120(Mul16  (Const16 [c])  (Const16 [d]))  => (Const16 [c*d])
   121(Mul32  (Const32 [c])  (Const32 [d]))  => (Const32 [c*d])
   122(Mul64  (Const64 [c])  (Const64 [d]))  => (Const64 [c*d])
   123(Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
   124(Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
   125
   126(And8   (Const8 [c])   (Const8 [d]))   => (Const8  [c&d])
   127(And16  (Const16 [c])  (Const16 [d]))  => (Const16 [c&d])
   128(And32  (Const32 [c])  (Const32 [d]))  => (Const32 [c&d])
   129(And64  (Const64 [c])  (Const64 [d]))  => (Const64 [c&d])
   130
   131(Or8   (Const8 [c])   (Const8 [d]))   => (Const8  [c|d])
   132(Or16  (Const16 [c])  (Const16 [d]))  => (Const16 [c|d])
   133(Or32  (Const32 [c])  (Const32 [d]))  => (Const32 [c|d])
   134(Or64  (Const64 [c])  (Const64 [d]))  => (Const64 [c|d])
   135
   136(Xor8   (Const8 [c])   (Const8 [d]))   => (Const8  [c^d])
   137(Xor16  (Const16 [c])  (Const16 [d]))  => (Const16 [c^d])
   138(Xor32  (Const32 [c])  (Const32 [d]))  => (Const32 [c^d])
   139(Xor64  (Const64 [c])  (Const64 [d]))  => (Const64 [c^d])
   140
   141(Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
   142(Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
   143(Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
   144(Ctz8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
   145
   146(Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
   147(Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
   148(Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
   149(Ctz8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
   150
   151(Div8   (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [c/d])
   152(Div16  (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [c/d])
   153(Div32  (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [c/d])
   154(Div64  (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [c/d])
   155(Div8u  (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c)/uint8(d))])
   156(Div16u (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
   157(Div32u (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
   158(Div64u (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
   159(Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
   160(Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
   161(Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y)
   162(Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y)
   163
   164(Not (ConstBool [c])) => (ConstBool [!c])
   165
   166(Floor       (Const64F [c])) => (Const64F [math.Floor(c)])
   167(Ceil        (Const64F [c])) => (Const64F [math.Ceil(c)])
   168(Trunc       (Const64F [c])) => (Const64F [math.Trunc(c)])
   169(RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)])
   170
   171// Convert x * 1 to x.
   172(Mul(8|16|32|64)  (Const(8|16|32|64)  [1]) x) => x
   173(Select0 (Mul(32|64)uover (Const(32|64) [1]) x)) => x
   174(Select1 (Mul(32|64)uover (Const(32|64) [1]) x)) => (ConstBool [false])
   175
   176// Convert x * -1 to -x.
   177(Mul(8|16|32|64)  (Const(8|16|32|64)  [-1]) x) => (Neg(8|16|32|64)  x)
   178
   179// DeMorgan's Laws
   180(And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y))
   181(Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y))
   182
   183// Convert multiplication by a power of two to a shift.
   184(Mul8  <t> n (Const8  [c])) && isPowerOfTwo8(c) => (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(c)]))
   185(Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)]))
   186(Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)]))
   187(Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)]))
   188(Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo8(-c)  => (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(-c)])))
   189(Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)])))
   190(Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)])))
   191(Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)])))
   192
   193(Mod8  (Const8  [c]) (Const8  [d])) && d != 0 => (Const8  [c % d])
   194(Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
   195(Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
   196(Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
   197
   198(Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c) % uint8(d))])
   199(Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
   200(Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
   201(Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
   202
   203(Lsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
   204(Rsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
   205(Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
   206(Lsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
   207(Rsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
   208(Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
   209(Lsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
   210(Rsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
   211(Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
   212(Lsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c << uint64(d)])
   213(Rsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c >> uint64(d)])
   214(Rsh8Ux64  (Const8  [c]) (Const64 [d])) => (Const8  [int8(uint8(c) >> uint64(d))])
   215
   216// Fold IsInBounds when the range of the index cannot exceed the limit.
   217(IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c => (ConstBool [true])
   218(IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c => (ConstBool [true])
   219(IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
   220(IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
   221(IsInBounds x x) => (ConstBool [false])
   222(IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d => (ConstBool [true])
   223(IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
   224(IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   225(IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   226(IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
   227(IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   228(IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   229(IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
   230(IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   231(IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
   232(IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
   233(IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
   234// (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
   235(IsInBounds (Mod32u _ y) y) => (ConstBool [true])
   236(IsInBounds (Mod64u _ y) y) => (ConstBool [true])
   237// Right shifting an unsigned number limits its value.
   238(IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   239(IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   240(IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   241(IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   242(IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   243(IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   244(IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   245(IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   246(IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   247(IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
   248
   249(IsSliceInBounds x x) => (ConstBool [true])
   250(IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
   251(IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
   252(IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
   253(IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
   254(IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
   255(IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
   256(IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
   257
   258(Eq(64|32|16|8) x x) => (ConstBool [true])
   259(EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
   260(EqB (ConstBool [false]) x) => (Not x)
   261(EqB (ConstBool [true]) x) => x
   262
   263(Neq(64|32|16|8) x x) => (ConstBool [false])
   264(NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
   265(NeqB (ConstBool [false]) x) => x
   266(NeqB (ConstBool [true]) x) => (Not x)
   267(NeqB (Not x) (Not y)) => (NeqB x y)
   268
   269(Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
   270(Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
   271(Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
   272(Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Eq8  (Const8  <t> [c-d]) x)
   273
   274(Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
   275(Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
   276(Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
   277(Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Neq8  (Const8  <t> [c-d]) x)
   278
   279// signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
   280(AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   281(AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   282(AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   283(AndB (Leq8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   284
   285// signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
   286(AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   287(AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   288(AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   289(AndB (Less8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1])) (Const8  <x.Type> [d-c-1]))
   290
   291// unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
   292(AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   293(AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   294(AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   295(AndB (Leq8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   296
   297// unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
   298(AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   299(AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   300(AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   301(AndB (Less8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c+1)  && uint8(c+1)  > uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1]))  (Const8  <x.Type> [d-c-1]))
   302
   303// signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
   304(OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   305(OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   306(OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   307(OrB ((Less|Leq)8  (Const8  [c]) x) (Less8  x (Const8  [d]))) && c >= d => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   308
   309// signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
   310(OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   311(OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   312(OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   313(OrB ((Less|Leq)8  (Const8  [c]) x) (Leq8  x (Const8  [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   314
   315// unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
   316(OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   317(OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   318(OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   319(OrB ((Less|Leq)8U  (Const8  [c]) x) (Less8U  x (Const8  [d]))) && uint8(c)  >= uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   320
   321// unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
   322(OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   323(OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   324(OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   325(OrB ((Less|Leq)8U  (Const8  [c]) x) (Leq8U  x (Const8  [d]))) && uint8(c)  >= uint8(d+1)  && uint8(d+1)  > uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   326
   327// Canonicalize x-const to x+(-const)
   328(Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
   329(Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
   330(Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
   331(Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  => (Add8  (Const8  <t> [-c]) x)
   332
   333// fold negation into comparison operators
   334(Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
   335(Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
   336
   337(Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
   338(Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
   339(Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
   340(Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
   341
   342// Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
   343// a[i].b = ...; a[i+1].b = ...
   344(Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) =>
   345  (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
   346(Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) =>
   347  (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
   348
   349// Rewrite x*y ± x*z  to  x*(y±z)
   350(Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   351	=> (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
   352(Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   353	=> (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
   354
   355// rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
   356// the number of the other rewrite rules for const shifts
   357(Lsh64x32  <t> x (Const32 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
   358(Lsh64x16  <t> x (Const16 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
   359(Lsh64x8   <t> x (Const8  [c])) => (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
   360(Rsh64x32  <t> x (Const32 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
   361(Rsh64x16  <t> x (Const16 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
   362(Rsh64x8   <t> x (Const8  [c])) => (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
   363(Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
   364(Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
   365(Rsh64Ux8  <t> x (Const8  [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
   366
   367(Lsh32x32  <t> x (Const32 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
   368(Lsh32x16  <t> x (Const16 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
   369(Lsh32x8   <t> x (Const8  [c])) => (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
   370(Rsh32x32  <t> x (Const32 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
   371(Rsh32x16  <t> x (Const16 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
   372(Rsh32x8   <t> x (Const8  [c])) => (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
   373(Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
   374(Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
   375(Rsh32Ux8  <t> x (Const8  [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
   376
   377(Lsh16x32  <t> x (Const32 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
   378(Lsh16x16  <t> x (Const16 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
   379(Lsh16x8   <t> x (Const8  [c])) => (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
   380(Rsh16x32  <t> x (Const32 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
   381(Rsh16x16  <t> x (Const16 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
   382(Rsh16x8   <t> x (Const8  [c])) => (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
   383(Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
   384(Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
   385(Rsh16Ux8  <t> x (Const8  [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
   386
   387(Lsh8x32  <t> x (Const32 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
   388(Lsh8x16  <t> x (Const16 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
   389(Lsh8x8   <t> x (Const8  [c])) => (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
   390(Rsh8x32  <t> x (Const32 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
   391(Rsh8x16  <t> x (Const16 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
   392(Rsh8x8   <t> x (Const8  [c])) => (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
   393(Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
   394(Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
   395(Rsh8Ux8  <t> x (Const8  [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
   396
   397// shifts by zero
   398(Lsh(64|32|16|8)x64  x (Const64 [0])) => x
   399(Rsh(64|32|16|8)x64  x (Const64 [0])) => x
   400(Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
   401
   402// rotates by multiples of register width
   403(RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
   404(RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
   405(RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
   406(RotateLeft8  x (Const8 [c]))  && c%8  == 0 => x
   407
   408// zero shifted
   409(Lsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   410(Rsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   411(Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
   412(Lsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   413(Rsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   414(Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
   415(Lsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   416(Rsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   417(Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
   418(Lsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   419(Rsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   420(Rsh8Ux(64|32|16|8)  (Const8  [0]) _) => (Const8  [0])
   421
   422// large left shifts of all values, and right shifts of unsigned values
   423((Lsh64|Rsh64U)x64  _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
   424((Lsh32|Rsh32U)x64  _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   425((Lsh16|Rsh16U)x64  _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   426((Lsh8|Rsh8U)x64    _ (Const64 [c])) && uint64(c) >= 8  => (Const8  [0])
   427
   428// combine const shifts
   429(Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
   430(Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
   431(Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
   432(Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64  x (Const64 <t> [c+d]))
   433
   434(Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
   435(Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
   436(Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
   437(Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64  x (Const64 <t> [c+d]))
   438
   439(Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
   440(Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
   441(Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
   442(Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64  x (Const64 <t> [c+d]))
   443
   444// Remove signed right shift before an unsigned right shift that extracts the sign bit.
   445(Rsh8Ux64  (Rsh8x64  x _) (Const64 <t> [7] )) => (Rsh8Ux64  x (Const64 <t> [7] ))
   446(Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
   447(Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
   448(Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
   449
   450// Convert x>>c<<c to x&^(1<<c-1)
   451(Lsh64x64 i:(Rsh(64|64U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c]))
   452(Lsh32x64 i:(Rsh(32|32U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c]))
   453(Lsh16x64 i:(Rsh(16|16U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c]))
   454(Lsh8x64  i:(Rsh(8|8U)x64    x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8  && i.Uses == 1 => (And8  x (Const8  <v.Type> [int8(-1)  << c]))
   455// similarly for x<<c>>c
   456(Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)]))
   457(Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)]))
   458(Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)]))
   459(Rsh8Ux64  i:(Lsh8x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8  && i.Uses == 1 => (And8  x (Const8  <v.Type> [int8 (^uint8 (0)>>c)]))
   460
   461// ((x >> c1) << c2) >> c3
   462(Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   463  && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   464  => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   465
   466// ((x << c1) >> c2) << c3
   467(Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   468  && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   469  => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   470
   471// (x >> c) & uppermask = 0
   472(And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
   473(And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
   474(And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
   475(And8  (Const8  [m]) (Rsh8Ux64  _ (Const64 [c]))) && c >= int64(8-ntz8(m))  => (Const8  [0])
   476
   477// (x << c) & lowermask = 0
   478(And64 (Const64 [m]) (Lsh64x64  _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
   479(And32 (Const32 [m]) (Lsh32x64  _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
   480(And16 (Const16 [m]) (Lsh16x64  _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
   481(And8  (Const8  [m]) (Lsh8x64   _ (Const64 [c]))) && c >= int64(8-nlz8(m))  => (Const8  [0])
   482
   483// replace shifts with zero extensions
   484(Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
   485(Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
   486(Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
   487(Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
   488(Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
   489(Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
   490
   491// replace shifts with sign extensions
   492(Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
   493(Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
   494(Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
   495(Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
   496(Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
   497(Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
   498
   499// constant comparisons
   500(Eq(64|32|16|8)   (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
   501(Neq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
   502(Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
   503(Leq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
   504
   505(Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
   506(Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
   507(Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
   508(Less8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <  uint8(d)])
   509
   510(Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
   511(Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
   512(Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
   513(Leq8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <=  uint8(d)])
   514
   515(Leq8  (Const8  [0]) (And8  _ (Const8  [c]))) && c >= 0 => (ConstBool [true])
   516(Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
   517(Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
   518(Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
   519
   520(Leq8  (Const8  [0]) (Rsh8Ux64  _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   521(Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   522(Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   523(Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   524
   525// prefer equalities with zero
   526(Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   527(Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   528(Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   529(Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   530
   531// prefer comparisons with zero
   532(Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   533(Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   534(Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   535(Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   536
   537// constant floating point comparisons
   538(Eq32F   (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
   539(Eq64F   (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
   540(Neq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
   541(Neq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
   542(Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
   543(Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
   544(Leq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
   545(Leq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
   546
   547// simplifications
   548(Or(64|32|16|8) x x) => x
   549(Or(64|32|16|8) (Const(64|32|16|8)  [0]) x) => x
   550(Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
   551(Or(64|32|16|8) (Com(64|32|16|8)     x)  x) => (Const(64|32|16|8) [-1])
   552
   553(And(64|32|16|8) x x) => x
   554(And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
   555(And(64|32|16|8) (Const(64|32|16|8)  [0]) _) => (Const(64|32|16|8) [0])
   556(And(64|32|16|8) (Com(64|32|16|8)     x)  x) => (Const(64|32|16|8) [0])
   557
   558(Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   559(Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   560(Xor(64|32|16|8) (Com(64|32|16|8)    x)  x) => (Const(64|32|16|8) [-1])
   561
   562(Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   563(Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   564(Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   565(Select0 (Mul(64|32)uover (Const(64|32) [0]) x)) => (Const(64|32) [0])
   566(Select1 (Mul(64|32)uover (Const(64|32) [0]) x)) => (ConstBool [false])
   567
   568(Com(64|32|16|8) (Com(64|32|16|8)  x)) => x
   569(Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
   570
   571(Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
   572(Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y)
   573
   574(Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x)
   575
   576(Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1])
   577(Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1])
   578(Add(64|32|16|8) (Com(64|32|16|8) x)                  x)  => (Const(64|32|16|8) [-1])
   579
   580// Simplification when involving common integer
   581// (t + x) - (t + y) == x - y
   582// (t + x) - (y + t) == x - y
   583// (x + t) - (y + t) == x - y
   584// (x + t) - (t + y) == x - y
   585// (x - t) + (t + y) == x + y
   586// (x - t) + (y + t) == x + y
   587(Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y)
   588(Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y)
   589
   590// ^(x-1) == ^x+1 == -x
   591(Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
   592(Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
   593
   594// -(-x) == x
   595(Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
   596
   597// -^x == x+1
   598(Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
   599
   600(And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
   601(Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
   602(Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
   603
   604// Fold comparisons with numeric bounds
   605(Less(64|32|16|8)U _ (Const(64|32|16|8) [0]))  => (ConstBool [false])
   606(Leq(64|32|16|8)U (Const(64|32|16|8) [0]) _)   => (ConstBool [true])
   607(Less(64|32|16|8)U (Const(64|32|16|8) [-1]) _) => (ConstBool [false])
   608(Leq(64|32|16|8)U _ (Const(64|32|16|8) [-1]))  => (ConstBool [true])
   609(Less64 _ (Const64 [math.MinInt64])) => (ConstBool [false])
   610(Less32 _ (Const32 [math.MinInt32])) => (ConstBool [false])
   611(Less16 _ (Const16 [math.MinInt16])) => (ConstBool [false])
   612(Less8  _ (Const8  [math.MinInt8 ])) => (ConstBool [false])
   613(Leq64 (Const64 [math.MinInt64]) _)  => (ConstBool [true])
   614(Leq32 (Const32 [math.MinInt32]) _)  => (ConstBool [true])
   615(Leq16 (Const16 [math.MinInt16]) _)  => (ConstBool [true])
   616(Leq8  (Const8  [math.MinInt8 ]) _)  => (ConstBool [true])
   617(Less64 (Const64 [math.MaxInt64]) _) => (ConstBool [false])
   618(Less32 (Const32 [math.MaxInt32]) _) => (ConstBool [false])
   619(Less16 (Const16 [math.MaxInt16]) _) => (ConstBool [false])
   620(Less8  (Const8  [math.MaxInt8 ]) _) => (ConstBool [false])
   621(Leq64 _ (Const64 [math.MaxInt64]))  => (ConstBool [true])
   622(Leq32 _ (Const32 [math.MaxInt32]))  => (ConstBool [true])
   623(Leq16 _ (Const16 [math.MaxInt16]))  => (ConstBool [true])
   624(Leq8  _ (Const8  [math.MaxInt8 ]))  => (ConstBool [true])
   625
   626// Canonicalize <= on numeric bounds and < near numeric bounds to ==
   627(Leq(64|32|16|8)U x c:(Const(64|32|16|8) [0]))     => (Eq(64|32|16|8) x c)
   628(Leq(64|32|16|8)U c:(Const(64|32|16|8) [-1]) x)    => (Eq(64|32|16|8) x c)
   629(Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1]))  => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   630(Less(64|32|16|8)U (Const(64|32|16|8) <t> [-2]) x) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [-1]))
   631(Leq64 x c:(Const64 [math.MinInt64])) => (Eq64 x c)
   632(Leq32 x c:(Const32 [math.MinInt32])) => (Eq32 x c)
   633(Leq16 x c:(Const16 [math.MinInt16])) => (Eq16 x c)
   634(Leq8  x c:(Const8  [math.MinInt8 ])) => (Eq8  x c)
   635(Leq64 c:(Const64 [math.MaxInt64]) x) => (Eq64 x c)
   636(Leq32 c:(Const32 [math.MaxInt32]) x) => (Eq32 x c)
   637(Leq16 c:(Const16 [math.MaxInt16]) x) => (Eq16 x c)
   638(Leq8  c:(Const8  [math.MaxInt8 ]) x) => (Eq8  x c)
   639(Less64 x (Const64 <t> [math.MinInt64+1])) => (Eq64 x (Const64 <t> [math.MinInt64]))
   640(Less32 x (Const32 <t> [math.MinInt32+1])) => (Eq32 x (Const32 <t> [math.MinInt32]))
   641(Less16 x (Const16 <t> [math.MinInt16+1])) => (Eq16 x (Const16 <t> [math.MinInt16]))
   642(Less8  x (Const8  <t> [math.MinInt8 +1])) => (Eq8  x (Const8  <t> [math.MinInt8 ]))
   643(Less64 (Const64 <t> [math.MaxInt64-1]) x) => (Eq64 x (Const64 <t> [math.MaxInt64]))
   644(Less32 (Const32 <t> [math.MaxInt32-1]) x) => (Eq32 x (Const32 <t> [math.MaxInt32]))
   645(Less16 (Const16 <t> [math.MaxInt16-1]) x) => (Eq16 x (Const16 <t> [math.MaxInt16]))
   646(Less8  (Const8  <t> [math.MaxInt8 -1]) x) => (Eq8  x (Const8  <t> [math.MaxInt8 ]))
   647
   648// Ands clear bits. Ors set bits.
   649// If a subsequent Or will set all the bits
   650// that an And cleared, we can skip the And.
   651// This happens in bitmasking code like:
   652//   x &^= 3 << shift // clear two old bits
   653//   x  |= v << shift // set two new bits
   654// when shift is a small constant and v ends up a constant 3.
   655(Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 => (Or8  (Const8  <t> [c1]) x)
   656(Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
   657(Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
   658(Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
   659
   660(Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
   661(Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
   662(Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
   663(Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
   664(Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
   665(Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
   666
   667(ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
   668(ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
   669(ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
   670(ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
   671(ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
   672(ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
   673
   674(SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
   675(SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
   676(SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
   677(SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
   678(SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
   679(SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
   680
   681(Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
   682(Slicemask (Const32 [0]))          => (Const32 [0])
   683(Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
   684(Slicemask (Const64 [0]))          => (Const64 [0])
   685
   686// simplifications often used for lengths.  e.g. len(s[i:i+5])==5
   687(Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
   688(Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
   689(Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y)
   690(Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y)
   691(Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y
   692(Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z)
   693
   694// basic phi simplifications
   695(Phi (Const8  [c]) (Const8  [c])) => (Const8  [c])
   696(Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
   697(Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
   698(Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
   699
   700// slice and interface comparisons
   701// The frontend ensures that we can only compare against nil,
   702// so we need only compare the first word (interface type or slice ptr).
   703(EqInter x y)  => (EqPtr  (ITab x) (ITab y))
   704(NeqInter x y) => (NeqPtr (ITab x) (ITab y))
   705(EqSlice x y)  => (EqPtr  (SlicePtr x) (SlicePtr y))
   706(NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
   707
   708// Load of store of same address, with compatibly typed value and same size
   709(Load <t1> p1 (Store {t2} p2 x _))
   710	&& isSamePtr(p1, p2)
   711	&& t1.Compare(x.Type) == types.CMPeq
   712	&& t1.Size() == t2.Size()
   713	=> x
   714(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
   715	&& isSamePtr(p1, p3)
   716	&& t1.Compare(x.Type) == types.CMPeq
   717	&& t1.Size() == t2.Size()
   718	&& disjoint(p3, t3.Size(), p2, t2.Size())
   719	=> x
   720(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
   721	&& isSamePtr(p1, p4)
   722	&& t1.Compare(x.Type) == types.CMPeq
   723	&& t1.Size() == t2.Size()
   724	&& disjoint(p4, t4.Size(), p2, t2.Size())
   725	&& disjoint(p4, t4.Size(), p3, t3.Size())
   726	=> x
   727(Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
   728	&& isSamePtr(p1, p5)
   729	&& t1.Compare(x.Type) == types.CMPeq
   730	&& t1.Size() == t2.Size()
   731	&& disjoint(p5, t5.Size(), p2, t2.Size())
   732	&& disjoint(p5, t5.Size(), p3, t3.Size())
   733	&& disjoint(p5, t5.Size(), p4, t4.Size())
   734	=> x
   735
   736// Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
   737(Load <t1> p1 (Store {t2} p2 (Const64  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
   738(Load <t1> p1 (Store {t2} p2 (Const32  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
   739(Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1)   => (Const64  [int64(math.Float64bits(x))])
   740(Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1)   => (Const32  [int32(math.Float32bits(x))])
   741
   742// Float Loads up to Zeros so they can be constant folded.
   743(Load <t1> op:(OffPtr [o1] p1)
   744	(Store {t2} p2 _
   745		mem:(Zero [n] p3 _)))
   746	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
   747	&& CanSSA(t1)
   748	&& disjoint(op, t1.Size(), p2, t2.Size())
   749	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
   750(Load <t1> op:(OffPtr [o1] p1)
   751	(Store {t2} p2 _
   752		(Store {t3} p3 _
   753			mem:(Zero [n] p4 _))))
   754	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
   755	&& CanSSA(t1)
   756	&& disjoint(op, t1.Size(), p2, t2.Size())
   757	&& disjoint(op, t1.Size(), p3, t3.Size())
   758	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
   759(Load <t1> op:(OffPtr [o1] p1)
   760	(Store {t2} p2 _
   761		(Store {t3} p3 _
   762			(Store {t4} p4 _
   763				mem:(Zero [n] p5 _)))))
   764	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
   765	&& CanSSA(t1)
   766	&& disjoint(op, t1.Size(), p2, t2.Size())
   767	&& disjoint(op, t1.Size(), p3, t3.Size())
   768	&& disjoint(op, t1.Size(), p4, t4.Size())
   769	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
   770(Load <t1> op:(OffPtr [o1] p1)
   771	(Store {t2} p2 _
   772		(Store {t3} p3 _
   773			(Store {t4} p4 _
   774				(Store {t5} p5 _
   775					mem:(Zero [n] p6 _))))))
   776	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
   777	&& CanSSA(t1)
   778	&& disjoint(op, t1.Size(), p2, t2.Size())
   779	&& disjoint(op, t1.Size(), p3, t3.Size())
   780	&& disjoint(op, t1.Size(), p4, t4.Size())
   781	&& disjoint(op, t1.Size(), p5, t5.Size())
   782	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
   783
   784// Zero to Load forwarding.
   785(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   786	&& t1.IsBoolean()
   787	&& isSamePtr(p1, p2)
   788	&& n >= o + 1
   789	=> (ConstBool [false])
   790(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   791	&& is8BitInt(t1)
   792	&& isSamePtr(p1, p2)
   793	&& n >= o + 1
   794	=> (Const8 [0])
   795(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   796	&& is16BitInt(t1)
   797	&& isSamePtr(p1, p2)
   798	&& n >= o + 2
   799	=> (Const16 [0])
   800(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   801	&& is32BitInt(t1)
   802	&& isSamePtr(p1, p2)
   803	&& n >= o + 4
   804	=> (Const32 [0])
   805(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   806	&& is64BitInt(t1)
   807	&& isSamePtr(p1, p2)
   808	&& n >= o + 8
   809	=> (Const64 [0])
   810(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   811	&& is32BitFloat(t1)
   812	&& isSamePtr(p1, p2)
   813	&& n >= o + 4
   814	=> (Const32F [0])
   815(Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   816	&& is64BitFloat(t1)
   817	&& isSamePtr(p1, p2)
   818	&& n >= o + 8
   819	=> (Const64F [0])
   820
   821// Eliminate stores of values that have just been loaded from the same location.
   822// We also handle the common case where there are some intermediate stores.
   823(Store {t1} p1 (Load <t2> p2 mem) mem)
   824	&& isSamePtr(p1, p2)
   825	&& t2.Size() == t1.Size()
   826	=> mem
   827(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
   828	&& isSamePtr(p1, p2)
   829	&& t2.Size() == t1.Size()
   830	&& disjoint(p1, t1.Size(), p3, t3.Size())
   831	=> mem
   832(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
   833	&& isSamePtr(p1, p2)
   834	&& t2.Size() == t1.Size()
   835	&& disjoint(p1, t1.Size(), p3, t3.Size())
   836	&& disjoint(p1, t1.Size(), p4, t4.Size())
   837	=> mem
   838(Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
   839	&& isSamePtr(p1, p2)
   840	&& t2.Size() == t1.Size()
   841	&& disjoint(p1, t1.Size(), p3, t3.Size())
   842	&& disjoint(p1, t1.Size(), p4, t4.Size())
   843	&& disjoint(p1, t1.Size(), p5, t5.Size())
   844	=> mem
   845
   846// Don't Store zeros to cleared variables.
   847(Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
   848	&& isConstZero(x)
   849	&& o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
   850	=> mem
   851(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
   852	&& isConstZero(x)
   853	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
   854	&& disjoint(op, t1.Size(), p2, t2.Size())
   855	=> mem
   856(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
   857	&& isConstZero(x)
   858	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
   859	&& disjoint(op, t1.Size(), p2, t2.Size())
   860	&& disjoint(op, t1.Size(), p3, t3.Size())
   861	=> mem
   862(Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
   863	&& isConstZero(x)
   864	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
   865	&& disjoint(op, t1.Size(), p2, t2.Size())
   866	&& disjoint(op, t1.Size(), p3, t3.Size())
   867	&& disjoint(op, t1.Size(), p4, t4.Size())
   868	=> mem
   869
   870// Collapse OffPtr
   871(OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
   872(OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
   873
   874// indexing operations
   875// Note: bounds check has already been done
   876(PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
   877(PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
   878
   879// struct operations
   880(StructSelect (StructMake1 x)) => x
   881(StructSelect [0] (StructMake2 x _)) => x
   882(StructSelect [1] (StructMake2 _ x)) => x
   883(StructSelect [0] (StructMake3 x _ _)) => x
   884(StructSelect [1] (StructMake3 _ x _)) => x
   885(StructSelect [2] (StructMake3 _ _ x)) => x
   886(StructSelect [0] (StructMake4 x _ _ _)) => x
   887(StructSelect [1] (StructMake4 _ x _ _)) => x
   888(StructSelect [2] (StructMake4 _ _ x _)) => x
   889(StructSelect [3] (StructMake4 _ _ _ x)) => x
   890
   891(Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && CanSSA(t) =>
   892  (StructMake0)
   893(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && CanSSA(t) =>
   894  (StructMake1
   895    (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem))
   896(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && CanSSA(t) =>
   897  (StructMake2
   898    (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   899    (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem))
   900(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && CanSSA(t) =>
   901  (StructMake3
   902    (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   903    (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   904    (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem))
   905(Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && CanSSA(t) =>
   906  (StructMake4
   907    (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   908    (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   909    (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)
   910    (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem))
   911
   912(StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) =>
   913  @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
   914
   915(Store _ (StructMake0) mem) => mem
   916(Store dst (StructMake1 <t> f0) mem) =>
   917  (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)
   918(Store dst (StructMake2 <t> f0 f1) mem) =>
   919  (Store {t.FieldType(1)}
   920    (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   921    f1
   922    (Store {t.FieldType(0)}
   923      (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   924        f0 mem))
   925(Store dst (StructMake3 <t> f0 f1 f2) mem) =>
   926  (Store {t.FieldType(2)}
   927    (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   928    f2
   929    (Store {t.FieldType(1)}
   930      (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   931      f1
   932      (Store {t.FieldType(0)}
   933        (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   934          f0 mem)))
   935(Store dst (StructMake4 <t> f0 f1 f2 f3) mem) =>
   936  (Store {t.FieldType(3)}
   937    (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst)
   938    f3
   939    (Store {t.FieldType(2)}
   940      (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   941      f2
   942      (Store {t.FieldType(1)}
   943        (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   944        f1
   945        (Store {t.FieldType(0)}
   946          (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   947            f0 mem))))
   948
   949// Putting struct{*byte} and similar into direct interfaces.
   950(IMake _typ (StructMake1 val)) => (IMake _typ val)
   951(StructSelect [0] (IData x)) => (IData x)
   952
   953// un-SSAable values use mem->mem copies
   954(Store {t} dst (Load src mem) mem) && !CanSSA(t) =>
   955	(Move {t} [t.Size()] dst src mem)
   956(Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) =>
   957	(Move {t} [t.Size()] dst src (VarDef {x} mem))
   958
   959// array ops
   960(ArraySelect (ArrayMake1 x)) => x
   961
   962(Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
   963  (ArrayMake0)
   964
   965(Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) =>
   966  (ArrayMake1 (Load <t.Elem()> ptr mem))
   967
   968(Store _ (ArrayMake0) mem) => mem
   969(Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
   970
   971// Putting [1]*byte and similar into direct interfaces.
   972(IMake _typ (ArrayMake1 val)) => (IMake _typ val)
   973(ArraySelect [0] (IData x)) => (IData x)
   974
   975// string ops
   976// Decomposing StringMake and lowering of StringPtr and StringLen
   977// happens in a later pass, dec, so that these operations are available
   978// to other passes for optimizations.
   979(StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
   980(StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
   981(ConstString {str}) && config.PtrSize == 4 && str == "" =>
   982  (StringMake (ConstNil) (Const32 <typ.Int> [0]))
   983(ConstString {str}) && config.PtrSize == 8 && str == "" =>
   984  (StringMake (ConstNil) (Const64 <typ.Int> [0]))
   985(ConstString {str}) && config.PtrSize == 4 && str != "" =>
   986  (StringMake
   987    (Addr <typ.BytePtr> {fe.StringData(str)}
   988      (SB))
   989    (Const32 <typ.Int> [int32(len(str))]))
   990(ConstString {str}) && config.PtrSize == 8 && str != "" =>
   991  (StringMake
   992    (Addr <typ.BytePtr> {fe.StringData(str)}
   993      (SB))
   994    (Const64 <typ.Int> [int64(len(str))]))
   995
   996// slice ops
   997// Only a few slice rules are provided here.  See dec.rules for
   998// a more comprehensive set.
   999(SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
  1000(SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
  1001(SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
  1002(SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
  1003(SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
  1004(SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
  1005(SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
  1006(SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
  1007(ConstSlice) && config.PtrSize == 4 =>
  1008  (SliceMake
  1009    (ConstNil <v.Type.Elem().PtrTo()>)
  1010    (Const32 <typ.Int> [0])
  1011    (Const32 <typ.Int> [0]))
  1012(ConstSlice) && config.PtrSize == 8 =>
  1013  (SliceMake
  1014    (ConstNil <v.Type.Elem().PtrTo()>)
  1015    (Const64 <typ.Int> [0])
  1016    (Const64 <typ.Int> [0]))
  1017
  1018// interface ops
  1019(ConstInterface) =>
  1020  (IMake
  1021    (ConstNil <typ.Uintptr>)
  1022    (ConstNil <typ.BytePtr>))
  1023
  1024(NilCheck ptr:(GetG mem) mem) => ptr
  1025
  1026(If (Not cond) yes no) => (If cond no yes)
  1027(If (ConstBool [c]) yes no) && c => (First yes no)
  1028(If (ConstBool [c]) yes no) && !c => (First no yes)
  1029
  1030(Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y))
  1031
  1032// Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
  1033(Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
  1034(Convert (Convert ptr mem) mem) => ptr
  1035
  1036// strength reduction of divide by a constant.
  1037// See ../magic.go for a detailed description of these algorithms.
  1038
  1039// Unsigned divide by power of 2.  Strength reduce to a shift.
  1040(Div8u  n (Const8  [c])) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
  1041(Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
  1042(Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
  1043(Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
  1044(Div64u n (Const64 [-1<<63]))                 => (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
  1045
  1046// Signed non-negative divide by power of 2.
  1047(Div8  n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
  1048(Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
  1049(Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
  1050(Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
  1051(Div64 n (Const64 [-1<<63])) && isNonNegative(n)                 => (Const64 [0])
  1052
  1053// Unsigned divide, not a power of 2.  Strength reduce to a multiply.
  1054// For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
  1055(Div8u x (Const8 [c])) && umagicOK8(c) =>
  1056  (Trunc32to8
  1057    (Rsh32Ux64 <typ.UInt32>
  1058      (Mul32 <typ.UInt32>
  1059        (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)])
  1060        (ZeroExt8to32 x))
  1061      (Const64 <typ.UInt64> [8+umagic8(c).s])))
  1062
  1063// For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
  1064(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 =>
  1065  (Trunc64to16
  1066    (Rsh64Ux64 <typ.UInt64>
  1067      (Mul64 <typ.UInt64>
  1068        (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)])
  1069        (ZeroExt16to64 x))
  1070      (Const64 <typ.UInt64> [16+umagic16(c).s])))
  1071
  1072// For 16-bit divides on 32-bit machines
  1073(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 =>
  1074  (Trunc32to16
  1075    (Rsh32Ux64 <typ.UInt32>
  1076      (Mul32 <typ.UInt32>
  1077        (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)])
  1078        (ZeroExt16to32 x))
  1079      (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
  1080(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 =>
  1081  (Trunc32to16
  1082    (Rsh32Ux64 <typ.UInt32>
  1083      (Mul32 <typ.UInt32>
  1084        (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)])
  1085        (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
  1086      (Const64 <typ.UInt64> [16+umagic16(c).s-2])))
  1087(Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg =>
  1088  (Trunc32to16
  1089    (Rsh32Ux64 <typ.UInt32>
  1090      (Avg32u
  1091        (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
  1092        (Mul32 <typ.UInt32>
  1093          (Const32 <typ.UInt32> [int32(umagic16(c).m)])
  1094          (ZeroExt16to32 x)))
  1095      (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
  1096
  1097// For 32-bit divides on 32-bit machines
  1098(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul =>
  1099  (Rsh32Ux64 <typ.UInt32>
  1100    (Hmul32u <typ.UInt32>
  1101      (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)])
  1102      x)
  1103    (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1104(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul =>
  1105  (Rsh32Ux64 <typ.UInt32>
  1106    (Hmul32u <typ.UInt32>
  1107      (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)])
  1108      (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
  1109    (Const64 <typ.UInt64> [umagic32(c).s-2]))
  1110(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul =>
  1111  (Rsh32Ux64 <typ.UInt32>
  1112    (Avg32u
  1113      x
  1114      (Hmul32u <typ.UInt32>
  1115        (Const32 <typ.UInt32> [int32(umagic32(c).m)])
  1116        x))
  1117    (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1118
  1119// For 32-bit divides on 64-bit machines
  1120// We'll use a regular (non-hi) multiply for this case.
  1121(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 =>
  1122  (Trunc64to32
  1123    (Rsh64Ux64 <typ.UInt64>
  1124      (Mul64 <typ.UInt64>
  1125        (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)])
  1126        (ZeroExt32to64 x))
  1127      (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1128(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 =>
  1129  (Trunc64to32
  1130    (Rsh64Ux64 <typ.UInt64>
  1131      (Mul64 <typ.UInt64>
  1132        (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)])
  1133        (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
  1134      (Const64 <typ.UInt64> [32+umagic32(c).s-2])))
  1135(Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg =>
  1136  (Trunc64to32
  1137    (Rsh64Ux64 <typ.UInt64>
  1138      (Avg64u
  1139        (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
  1140        (Mul64 <typ.UInt64>
  1141          (Const64 <typ.UInt32> [int64(umagic32(c).m)])
  1142          (ZeroExt32to64 x)))
  1143      (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1144
  1145// For unsigned 64-bit divides on 32-bit machines,
  1146// if the constant fits in 16 bits (so that the last term
  1147// fits in 32 bits), convert to three 32-bit divides by a constant.
  1148//
  1149// If 1<<32 = Q * c + R
  1150// and    x = hi << 32 + lo
  1151//
  1152// Then x = (hi/c*c + hi%c) << 32 + lo
  1153//        = hi/c*c<<32 + hi%c<<32 + lo
  1154//        = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c
  1155//        = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c)
  1156// and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c
  1157(Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul =>
  1158  (Add64
  1159    (Add64 <typ.UInt64>
  1160      (Add64 <typ.UInt64>
  1161        (Lsh64x64 <typ.UInt64>
  1162          (ZeroExt32to64
  1163            (Div32u <typ.UInt32>
  1164              (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1165              (Const32 <typ.UInt32> [int32(c)])))
  1166          (Const64 <typ.UInt64> [32]))
  1167        (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))))
  1168      (Mul64 <typ.UInt64>
  1169        (ZeroExt32to64 <typ.UInt64>
  1170          (Mod32u <typ.UInt32>
  1171            (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1172            (Const32 <typ.UInt32> [int32(c)])))
  1173        (Const64 <typ.UInt64> [int64((1<<32)/c)])))
  1174      (ZeroExt32to64
  1175        (Div32u <typ.UInt32>
  1176          (Add32 <typ.UInt32>
  1177            (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))
  1178            (Mul32 <typ.UInt32>
  1179              (Mod32u <typ.UInt32>
  1180                (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1181                (Const32 <typ.UInt32> [int32(c)]))
  1182              (Const32 <typ.UInt32> [int32((1<<32)%c)])))
  1183          (Const32 <typ.UInt32> [int32(c)]))))
  1184
  1185// For 64-bit divides on 64-bit machines
  1186// (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
  1187(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul =>
  1188  (Rsh64Ux64 <typ.UInt64>
  1189    (Hmul64u <typ.UInt64>
  1190      (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)])
  1191      x)
  1192    (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1193(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul =>
  1194  (Rsh64Ux64 <typ.UInt64>
  1195    (Hmul64u <typ.UInt64>
  1196      (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)])
  1197      (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
  1198    (Const64 <typ.UInt64> [umagic64(c).s-2]))
  1199(Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul =>
  1200  (Rsh64Ux64 <typ.UInt64>
  1201    (Avg64u
  1202      x
  1203      (Hmul64u <typ.UInt64>
  1204        (Const64 <typ.UInt64> [int64(umagic64(c).m)])
  1205        x))
  1206    (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1207
  1208// Signed divide by a negative constant.  Rewrite to divide by a positive constant.
  1209(Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Neg8  (Div8  <t> n (Const8  <t> [-c])))
  1210(Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
  1211(Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
  1212(Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
  1213
  1214// Dividing by the most-negative number.  Result is always 0 except
  1215// if the input is also the most-negative number.
  1216// We can detect that using the sign bit of x & -x.
  1217(Div8  <t> x (Const8  [-1<<7 ])) => (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
  1218(Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
  1219(Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
  1220(Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
  1221
  1222// Signed divide by power of 2.
  1223// n / c =       n >> log(c) if n >= 0
  1224//       = (n+c-1) >> log(c) if n < 0
  1225// We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
  1226(Div8  <t> n (Const8  [c])) && isPowerOfTwo8(c) =>
  1227  (Rsh8x64
  1228    (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))])))
  1229    (Const64 <typ.UInt64> [int64(log8(c))]))
  1230(Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) =>
  1231  (Rsh16x64
  1232    (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))])))
  1233    (Const64 <typ.UInt64> [int64(log16(c))]))
  1234(Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) =>
  1235  (Rsh32x64
  1236    (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))])))
  1237    (Const64 <typ.UInt64> [int64(log32(c))]))
  1238(Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) =>
  1239  (Rsh64x64
  1240    (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))])))
  1241    (Const64 <typ.UInt64> [int64(log64(c))]))
  1242
  1243// Signed divide, not a power of 2.  Strength reduce to a multiply.
  1244(Div8 <t> x (Const8 [c])) && smagicOK8(c) =>
  1245  (Sub8 <t>
  1246    (Rsh32x64 <t>
  1247      (Mul32 <typ.UInt32>
  1248        (Const32 <typ.UInt32> [int32(smagic8(c).m)])
  1249        (SignExt8to32 x))
  1250      (Const64 <typ.UInt64> [8+smagic8(c).s]))
  1251    (Rsh32x64 <t>
  1252      (SignExt8to32 x)
  1253      (Const64 <typ.UInt64> [31])))
  1254(Div16 <t> x (Const16 [c])) && smagicOK16(c) =>
  1255  (Sub16 <t>
  1256    (Rsh32x64 <t>
  1257      (Mul32 <typ.UInt32>
  1258        (Const32 <typ.UInt32> [int32(smagic16(c).m)])
  1259        (SignExt16to32 x))
  1260      (Const64 <typ.UInt64> [16+smagic16(c).s]))
  1261    (Rsh32x64 <t>
  1262      (SignExt16to32 x)
  1263      (Const64 <typ.UInt64> [31])))
  1264(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 =>
  1265  (Sub32 <t>
  1266    (Rsh64x64 <t>
  1267      (Mul64 <typ.UInt64>
  1268        (Const64 <typ.UInt64> [int64(smagic32(c).m)])
  1269        (SignExt32to64 x))
  1270      (Const64 <typ.UInt64> [32+smagic32(c).s]))
  1271    (Rsh64x64 <t>
  1272      (SignExt32to64 x)
  1273      (Const64 <typ.UInt64> [63])))
  1274(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul =>
  1275  (Sub32 <t>
  1276    (Rsh32x64 <t>
  1277      (Hmul32 <t>
  1278        (Const32 <typ.UInt32> [int32(smagic32(c).m/2)])
  1279        x)
  1280      (Const64 <typ.UInt64> [smagic32(c).s-1]))
  1281    (Rsh32x64 <t>
  1282      x
  1283      (Const64 <typ.UInt64> [31])))
  1284(Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul =>
  1285  (Sub32 <t>
  1286    (Rsh32x64 <t>
  1287      (Add32 <t>
  1288        (Hmul32 <t>
  1289          (Const32 <typ.UInt32> [int32(smagic32(c).m)])
  1290          x)
  1291        x)
  1292      (Const64 <typ.UInt64> [smagic32(c).s]))
  1293    (Rsh32x64 <t>
  1294      x
  1295      (Const64 <typ.UInt64> [31])))
  1296(Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul =>
  1297  (Sub64 <t>
  1298    (Rsh64x64 <t>
  1299      (Hmul64 <t>
  1300        (Const64 <typ.UInt64> [int64(smagic64(c).m/2)])
  1301        x)
  1302      (Const64 <typ.UInt64> [smagic64(c).s-1]))
  1303    (Rsh64x64 <t>
  1304      x
  1305      (Const64 <typ.UInt64> [63])))
  1306(Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul =>
  1307  (Sub64 <t>
  1308    (Rsh64x64 <t>
  1309      (Add64 <t>
  1310        (Hmul64 <t>
  1311          (Const64 <typ.UInt64> [int64(smagic64(c).m)])
  1312          x)
  1313        x)
  1314      (Const64 <typ.UInt64> [smagic64(c).s]))
  1315    (Rsh64x64 <t>
  1316      x
  1317      (Const64 <typ.UInt64> [63])))
  1318
  1319// Unsigned mod by power of 2 constant.
  1320(Mod8u  <t> n (Const8  [c])) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1321(Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1322(Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1323(Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1324(Mod64u <t> n (Const64 [-1<<63]))                 => (And64 n (Const64 <t> [1<<63-1]))
  1325
  1326// Signed non-negative mod by power of 2 constant.
  1327(Mod8  <t> n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1328(Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1329(Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1330(Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1331(Mod64 n (Const64 [-1<<63])) && isNonNegative(n)                   => n
  1332
  1333// Signed mod by negative constant.
  1334(Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Mod8  <t> n (Const8  <t> [-c]))
  1335(Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
  1336(Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
  1337(Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
  1338
  1339// All other mods by constants, do A%B = A-(A/B*B).
  1340// This implements % with two * and a bunch of ancillary ops.
  1341// One of the * is free if the user's code also computes A/B.
  1342(Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
  1343  => (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1344(Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
  1345  => (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1346(Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
  1347  => (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1348(Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
  1349  => (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1350(Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK8( c)
  1351  => (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1352(Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c)
  1353  => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1354(Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c)
  1355  => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1356(Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c)
  1357  => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1358
  1359// For architectures without rotates on less than 32-bits, promote these checks to 32-bit.
  1360(Eq8 (Mod8u x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
  1361	(Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
  1362(Eq16 (Mod16u x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
  1363	(Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
  1364(Eq8 (Mod8 x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
  1365	(Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1366(Eq16 (Mod16 x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
  1367	(Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1368
  1369// Divisibility checks x%c == 0 convert to multiply and rotate.
  1370// Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass
  1371// where (x/c) is performed using multiplication with magic constants.
  1372// To rewrite x%c == 0 requires pattern matching the rewritten expression
  1373// and checking that the division by the same constant wasn't already calculated.
  1374// This check is made by counting uses of the magic constant multiplication.
  1375// Note that if there were an intermediate opt pass, this rule could be applied
  1376// directly on the Div op and magic division rewrites could be delayed to late opt.
  1377
  1378// Unsigned divisibility checks convert to multiply and rotate.
  1379(Eq8 x (Mul8 (Const8 [c])
  1380  (Trunc32to8
  1381    (Rsh32Ux64
  1382      mul:(Mul32
  1383        (Const32 [m])
  1384        (ZeroExt8to32 x))
  1385      (Const64 [s])))
  1386	)
  1387)
  1388  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1389  && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s
  1390  && x.Op != OpConst8 && udivisibleOK8(c)
  1391 => (Leq8U
  1392			(RotateLeft8 <typ.UInt8>
  1393				(Mul8 <typ.UInt8>
  1394					(Const8 <typ.UInt8> [int8(udivisible8(c).m)])
  1395					x)
  1396				(Const8 <typ.UInt8> [int8(8-udivisible8(c).k)])
  1397				)
  1398			(Const8 <typ.UInt8> [int8(udivisible8(c).max)])
  1399		)
  1400
  1401(Eq16 x (Mul16 (Const16 [c])
  1402  (Trunc64to16
  1403    (Rsh64Ux64
  1404      mul:(Mul64
  1405        (Const64 [m])
  1406        (ZeroExt16to64 x))
  1407      (Const64 [s])))
  1408	)
  1409)
  1410  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1411  && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s
  1412  && x.Op != OpConst16 && udivisibleOK16(c)
  1413 => (Leq16U
  1414			(RotateLeft16 <typ.UInt16>
  1415				(Mul16 <typ.UInt16>
  1416					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1417					x)
  1418				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1419				)
  1420			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1421		)
  1422
  1423(Eq16 x (Mul16 (Const16 [c])
  1424  (Trunc32to16
  1425    (Rsh32Ux64
  1426      mul:(Mul32
  1427        (Const32 [m])
  1428        (ZeroExt16to32 x))
  1429      (Const64 [s])))
  1430	)
  1431)
  1432  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1433  && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1
  1434  && x.Op != OpConst16 && udivisibleOK16(c)
  1435 => (Leq16U
  1436			(RotateLeft16 <typ.UInt16>
  1437				(Mul16 <typ.UInt16>
  1438					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1439					x)
  1440				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1441				)
  1442			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1443		)
  1444
  1445(Eq16 x (Mul16 (Const16 [c])
  1446  (Trunc32to16
  1447    (Rsh32Ux64
  1448      mul:(Mul32
  1449        (Const32 [m])
  1450        (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1])))
  1451      (Const64 [s])))
  1452	)
  1453)
  1454  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1455  && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2
  1456  && x.Op != OpConst16 && udivisibleOK16(c)
  1457 => (Leq16U
  1458			(RotateLeft16 <typ.UInt16>
  1459				(Mul16 <typ.UInt16>
  1460					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1461					x)
  1462				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1463				)
  1464			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1465		)
  1466
  1467(Eq16 x (Mul16 (Const16 [c])
  1468  (Trunc32to16
  1469    (Rsh32Ux64
  1470      (Avg32u
  1471        (Lsh32x64 (ZeroExt16to32 x) (Const64 [16]))
  1472        mul:(Mul32
  1473          (Const32 [m])
  1474          (ZeroExt16to32 x)))
  1475      (Const64 [s])))
  1476	)
  1477)
  1478  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1479  && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1
  1480  && x.Op != OpConst16 && udivisibleOK16(c)
  1481 => (Leq16U
  1482			(RotateLeft16 <typ.UInt16>
  1483				(Mul16 <typ.UInt16>
  1484					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1485					x)
  1486				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1487				)
  1488			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1489		)
  1490
  1491(Eq32 x (Mul32 (Const32 [c])
  1492	(Rsh32Ux64
  1493		mul:(Hmul32u
  1494			(Const32 [m])
  1495			x)
  1496		(Const64 [s]))
  1497	)
  1498)
  1499  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1500  && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1
  1501	&& x.Op != OpConst32 && udivisibleOK32(c)
  1502 => (Leq32U
  1503			(RotateLeft32 <typ.UInt32>
  1504				(Mul32 <typ.UInt32>
  1505					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1506					x)
  1507				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1508				)
  1509			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1510		)
  1511
  1512(Eq32 x (Mul32 (Const32 [c])
  1513  (Rsh32Ux64
  1514    mul:(Hmul32u
  1515      (Const32 <typ.UInt32> [m])
  1516      (Rsh32Ux64 x (Const64 [1])))
  1517    (Const64 [s]))
  1518	)
  1519)
  1520  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1521  && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2
  1522	&& x.Op != OpConst32 && udivisibleOK32(c)
  1523 => (Leq32U
  1524			(RotateLeft32 <typ.UInt32>
  1525				(Mul32 <typ.UInt32>
  1526					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1527					x)
  1528				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1529				)
  1530			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1531		)
  1532
  1533(Eq32 x (Mul32 (Const32 [c])
  1534  (Rsh32Ux64
  1535    (Avg32u
  1536      x
  1537      mul:(Hmul32u
  1538        (Const32 [m])
  1539        x))
  1540    (Const64 [s]))
  1541	)
  1542)
  1543  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1544  && m == int32(umagic32(c).m) && s == umagic32(c).s-1
  1545	&& x.Op != OpConst32 && udivisibleOK32(c)
  1546 => (Leq32U
  1547			(RotateLeft32 <typ.UInt32>
  1548				(Mul32 <typ.UInt32>
  1549					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1550					x)
  1551				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1552				)
  1553			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1554		)
  1555
  1556(Eq32 x (Mul32 (Const32 [c])
  1557  (Trunc64to32
  1558    (Rsh64Ux64
  1559      mul:(Mul64
  1560        (Const64 [m])
  1561        (ZeroExt32to64 x))
  1562      (Const64 [s])))
  1563	)
  1564)
  1565  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1566  && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1
  1567	&& x.Op != OpConst32 && udivisibleOK32(c)
  1568 => (Leq32U
  1569			(RotateLeft32 <typ.UInt32>
  1570				(Mul32 <typ.UInt32>
  1571					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1572					x)
  1573				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1574				)
  1575			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1576		)
  1577
  1578(Eq32 x (Mul32 (Const32 [c])
  1579  (Trunc64to32
  1580    (Rsh64Ux64
  1581      mul:(Mul64
  1582        (Const64 [m])
  1583        (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1])))
  1584      (Const64 [s])))
  1585	)
  1586)
  1587  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1588  && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2
  1589	&& x.Op != OpConst32 && udivisibleOK32(c)
  1590 => (Leq32U
  1591			(RotateLeft32 <typ.UInt32>
  1592				(Mul32 <typ.UInt32>
  1593					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1594					x)
  1595				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1596				)
  1597			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1598		)
  1599
  1600(Eq32 x (Mul32 (Const32 [c])
  1601  (Trunc64to32
  1602    (Rsh64Ux64
  1603      (Avg64u
  1604        (Lsh64x64 (ZeroExt32to64 x) (Const64 [32]))
  1605        mul:(Mul64
  1606          (Const64 [m])
  1607          (ZeroExt32to64 x)))
  1608      (Const64 [s])))
  1609	)
  1610)
  1611  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1612  && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1
  1613	&& x.Op != OpConst32 && udivisibleOK32(c)
  1614 => (Leq32U
  1615			(RotateLeft32 <typ.UInt32>
  1616				(Mul32 <typ.UInt32>
  1617					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1618					x)
  1619				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1620				)
  1621			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1622		)
  1623
  1624(Eq64 x (Mul64 (Const64 [c])
  1625	(Rsh64Ux64
  1626		mul:(Hmul64u
  1627			(Const64 [m])
  1628			x)
  1629		(Const64 [s]))
  1630	)
  1631) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1632  && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1
  1633  && x.Op != OpConst64 && udivisibleOK64(c)
  1634 => (Leq64U
  1635			(RotateLeft64 <typ.UInt64>
  1636				(Mul64 <typ.UInt64>
  1637					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1638					x)
  1639				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1640				)
  1641			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1642		)
  1643(Eq64 x (Mul64 (Const64 [c])
  1644	(Rsh64Ux64
  1645		mul:(Hmul64u
  1646			(Const64 [m])
  1647			(Rsh64Ux64 x (Const64 [1])))
  1648		(Const64 [s]))
  1649	)
  1650) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1651  && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2
  1652  && x.Op != OpConst64 && udivisibleOK64(c)
  1653 => (Leq64U
  1654			(RotateLeft64 <typ.UInt64>
  1655				(Mul64 <typ.UInt64>
  1656					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1657					x)
  1658				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1659				)
  1660			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1661		)
  1662(Eq64 x (Mul64 (Const64 [c])
  1663	(Rsh64Ux64
  1664		(Avg64u
  1665			x
  1666			mul:(Hmul64u
  1667				(Const64 [m])
  1668				x))
  1669		(Const64 [s]))
  1670	)
  1671) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1672  && m == int64(umagic64(c).m) && s == umagic64(c).s-1
  1673  && x.Op != OpConst64 && udivisibleOK64(c)
  1674 => (Leq64U
  1675			(RotateLeft64 <typ.UInt64>
  1676				(Mul64 <typ.UInt64>
  1677					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1678					x)
  1679				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1680				)
  1681			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1682		)
  1683
  1684// Signed divisibility checks convert to multiply, add and rotate.
  1685(Eq8 x (Mul8 (Const8 [c])
  1686  (Sub8
  1687    (Rsh32x64
  1688      mul:(Mul32
  1689        (Const32 [m])
  1690        (SignExt8to32 x))
  1691      (Const64 [s]))
  1692    (Rsh32x64
  1693      (SignExt8to32 x)
  1694      (Const64 [31])))
  1695	)
  1696)
  1697  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1698  && m == int32(smagic8(c).m) && s == 8+smagic8(c).s
  1699	&& x.Op != OpConst8 && sdivisibleOK8(c)
  1700 => (Leq8U
  1701			(RotateLeft8 <typ.UInt8>
  1702				(Add8 <typ.UInt8>
  1703					(Mul8 <typ.UInt8>
  1704						(Const8 <typ.UInt8> [int8(sdivisible8(c).m)])
  1705						x)
  1706					(Const8 <typ.UInt8> [int8(sdivisible8(c).a)])
  1707				)
  1708				(Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)])
  1709			)
  1710			(Const8 <typ.UInt8> [int8(sdivisible8(c).max)])
  1711		)
  1712
  1713(Eq16 x (Mul16 (Const16 [c])
  1714  (Sub16
  1715    (Rsh32x64
  1716      mul:(Mul32
  1717        (Const32 [m])
  1718        (SignExt16to32 x))
  1719      (Const64 [s]))
  1720    (Rsh32x64
  1721      (SignExt16to32 x)
  1722      (Const64 [31])))
  1723	)
  1724)
  1725  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1726  && m == int32(smagic16(c).m) && s == 16+smagic16(c).s
  1727	&& x.Op != OpConst16 && sdivisibleOK16(c)
  1728 => (Leq16U
  1729			(RotateLeft16 <typ.UInt16>
  1730				(Add16 <typ.UInt16>
  1731					(Mul16 <typ.UInt16>
  1732						(Const16 <typ.UInt16> [int16(sdivisible16(c).m)])
  1733						x)
  1734					(Const16 <typ.UInt16> [int16(sdivisible16(c).a)])
  1735				)
  1736				(Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)])
  1737			)
  1738			(Const16 <typ.UInt16> [int16(sdivisible16(c).max)])
  1739		)
  1740
  1741(Eq32 x (Mul32 (Const32 [c])
  1742  (Sub32
  1743    (Rsh64x64
  1744      mul:(Mul64
  1745        (Const64 [m])
  1746        (SignExt32to64 x))
  1747      (Const64 [s]))
  1748    (Rsh64x64
  1749      (SignExt32to64 x)
  1750      (Const64 [63])))
  1751	)
  1752)
  1753  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1754  && m == int64(smagic32(c).m) && s == 32+smagic32(c).s
  1755	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1756 => (Leq32U
  1757			(RotateLeft32 <typ.UInt32>
  1758				(Add32 <typ.UInt32>
  1759					(Mul32 <typ.UInt32>
  1760						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1761						x)
  1762					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1763				)
  1764				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1765			)
  1766			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1767		)
  1768
  1769(Eq32 x (Mul32 (Const32 [c])
  1770  (Sub32
  1771    (Rsh32x64
  1772      mul:(Hmul32
  1773        (Const32 [m])
  1774        x)
  1775      (Const64 [s]))
  1776    (Rsh32x64
  1777      x
  1778      (Const64 [31])))
  1779	)
  1780)
  1781  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1782  && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1
  1783	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1784 => (Leq32U
  1785			(RotateLeft32 <typ.UInt32>
  1786				(Add32 <typ.UInt32>
  1787					(Mul32 <typ.UInt32>
  1788						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1789						x)
  1790					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1791				)
  1792				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1793			)
  1794			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1795		)
  1796
  1797(Eq32 x (Mul32 (Const32 [c])
  1798  (Sub32
  1799    (Rsh32x64
  1800      (Add32
  1801        mul:(Hmul32
  1802          (Const32 [m])
  1803          x)
  1804        x)
  1805      (Const64 [s]))
  1806    (Rsh32x64
  1807      x
  1808      (Const64 [31])))
  1809	)
  1810)
  1811  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1812  && m == int32(smagic32(c).m) && s == smagic32(c).s
  1813	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1814 => (Leq32U
  1815			(RotateLeft32 <typ.UInt32>
  1816				(Add32 <typ.UInt32>
  1817					(Mul32 <typ.UInt32>
  1818						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1819						x)
  1820					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1821				)
  1822				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1823			)
  1824			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1825		)
  1826
  1827(Eq64 x (Mul64 (Const64 [c])
  1828  (Sub64
  1829    (Rsh64x64
  1830      mul:(Hmul64
  1831        (Const64 [m])
  1832        x)
  1833      (Const64 [s]))
  1834    (Rsh64x64
  1835      x
  1836      (Const64 [63])))
  1837	)
  1838)
  1839  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1840  && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1
  1841	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1842 => (Leq64U
  1843			(RotateLeft64 <typ.UInt64>
  1844				(Add64 <typ.UInt64>
  1845					(Mul64 <typ.UInt64>
  1846						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1847						x)
  1848					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1849				)
  1850				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1851			)
  1852			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1853		)
  1854
  1855(Eq64 x (Mul64 (Const64 [c])
  1856  (Sub64
  1857    (Rsh64x64
  1858      (Add64
  1859        mul:(Hmul64
  1860          (Const64 [m])
  1861          x)
  1862        x)
  1863      (Const64 [s]))
  1864    (Rsh64x64
  1865      x
  1866      (Const64 [63])))
  1867	)
  1868)
  1869  && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1870  && m == int64(smagic64(c).m) && s == smagic64(c).s
  1871	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1872 => (Leq64U
  1873			(RotateLeft64 <typ.UInt64>
  1874				(Add64 <typ.UInt64>
  1875					(Mul64 <typ.UInt64>
  1876						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1877						x)
  1878					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1879				)
  1880				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1881			)
  1882			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1883		)
  1884
  1885// Divisibility check for signed integers for power of two constant are simple mask.
  1886// However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c)
  1887// where n/c contains fixup code to handle signed n.
  1888((Eq8|Neq8) n (Lsh8x64
  1889  (Rsh8x64
  1890    (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar])))
  1891    (Const64 <typ.UInt64> [k]))
  1892	(Const64 <typ.UInt64> [k]))
  1893) && k > 0 && k < 7 && kbar == 8 - k
  1894  => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0]))
  1895
  1896((Eq16|Neq16) n (Lsh16x64
  1897  (Rsh16x64
  1898    (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar])))
  1899    (Const64 <typ.UInt64> [k]))
  1900	(Const64 <typ.UInt64> [k]))
  1901) && k > 0 && k < 15 && kbar == 16 - k
  1902  => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0]))
  1903
  1904((Eq32|Neq32) n (Lsh32x64
  1905  (Rsh32x64
  1906    (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar])))
  1907    (Const64 <typ.UInt64> [k]))
  1908	(Const64 <typ.UInt64> [k]))
  1909) && k > 0 && k < 31 && kbar == 32 - k
  1910  => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0]))
  1911
  1912((Eq64|Neq64) n (Lsh64x64
  1913  (Rsh64x64
  1914    (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar])))
  1915    (Const64 <typ.UInt64> [k]))
  1916	(Const64 <typ.UInt64> [k]))
  1917) && k > 0 && k < 63 && kbar == 64 - k
  1918  => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0]))
  1919
  1920(Eq(8|16|32|64)  s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64)  x y)
  1921(Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
  1922
  1923// Optimize bitsets
  1924(Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1925  => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1926(Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1927  => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1928(Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1929  => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1930(Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1931  => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1932(Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1933  => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1934(Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1935  => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1936(Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1937  => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1938(Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1939  => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1940
  1941// Reassociate expressions involving
  1942// constants such that constants come first,
  1943// exposing obvious constant-folding opportunities.
  1944// Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
  1945// is constant, which pushes constants to the outside
  1946// of the expression. At that point, any constant-folding
  1947// opportunities should be obvious.
  1948// Note: don't include AddPtr here! In order to maintain the
  1949// invariant that pointers must stay within the pointed-to object,
  1950// we can't pull part of a pointer computation above the AddPtr.
  1951// See issue 37881.
  1952// Note: we don't need to handle any (x-C) cases because we already rewrite
  1953// (x-C) to (x+(-C)).
  1954
  1955// x + (C + z) -> C + (x + z)
  1956(Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
  1957(Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
  1958(Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
  1959(Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Add8  <t> z x))
  1960
  1961// x + (C - z) -> C + (x - z)
  1962(Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
  1963(Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
  1964(Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
  1965(Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> x z))
  1966
  1967// x - (C - z) -> x + (z - C) -> (x + z) - C
  1968(Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
  1969(Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
  1970(Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
  1971(Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  (Add8  <t> x z) i)
  1972
  1973// x - (z + C) -> x + (-z - C) -> (x - z) - C
  1974(Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
  1975(Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
  1976(Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
  1977(Sub8  x (Add8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8 (Sub8  <t> x z) i)
  1978
  1979// (C - z) - x -> C - (z + x)
  1980(Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
  1981(Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
  1982(Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
  1983(Sub8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  i (Add8  <t> z x))
  1984
  1985// (z + C) -x -> C + (z - x)
  1986(Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
  1987(Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
  1988(Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
  1989(Sub8  (Add8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> z x))
  1990
  1991// x & (C & z) -> C & (x & z)
  1992(And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
  1993(And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
  1994(And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
  1995(And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (And8  i (And8  <t> z x))
  1996
  1997// x | (C | z) -> C | (x | z)
  1998(Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
  1999(Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
  2000(Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
  2001(Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Or8  i (Or8  <t> z x))
  2002
  2003// x ^ (C ^ z) -> C ^ (x ^ z)
  2004(Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
  2005(Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
  2006(Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
  2007(Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Xor8  i (Xor8  <t> z x))
  2008
  2009// x * (D * z) = D * (x * z)
  2010(Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
  2011(Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
  2012(Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
  2013(Mul8  (Mul8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Mul8  i (Mul8  <t> x z))
  2014
  2015// C + (D + x) -> (C + D) + x
  2016(Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
  2017(Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
  2018(Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
  2019(Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c+d]) x)
  2020
  2021// C + (D - x) -> (C + D) - x
  2022(Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
  2023(Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
  2024(Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
  2025(Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c+d]) x)
  2026
  2027// C - (D - x) -> (C - D) + x
  2028(Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
  2029(Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
  2030(Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
  2031(Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c-d]) x)
  2032
  2033// C - (D + x) -> (C - D) - x
  2034(Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
  2035(Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
  2036(Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
  2037(Sub8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c-d]) x)
  2038
  2039// C & (D & x) -> (C & D) & x
  2040(And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
  2041(And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
  2042(And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
  2043(And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) => (And8  (Const8  <t> [c&d]) x)
  2044
  2045// C | (D | x) -> (C | D) | x
  2046(Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
  2047(Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
  2048(Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
  2049(Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) => (Or8  (Const8  <t> [c|d]) x)
  2050
  2051// C ^ (D ^ x) -> (C ^ D) ^ x
  2052(Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
  2053(Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
  2054(Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
  2055(Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) => (Xor8  (Const8  <t> [c^d]) x)
  2056
  2057// C * (D * x) = (C * D) * x
  2058(Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
  2059(Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
  2060(Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
  2061(Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) => (Mul8  (Const8  <t> [c*d]) x)
  2062
  2063// floating point optimizations
  2064(Mul(32|64)F x (Const(32|64)F [1])) => x
  2065(Mul32F x (Const32F [-1])) => (Neg32F x)
  2066(Mul64F x (Const64F [-1])) => (Neg64F x)
  2067(Mul32F x (Const32F [2])) => (Add32F x x)
  2068(Mul64F x (Const64F [2])) => (Add64F x x)
  2069
  2070(Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
  2071(Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
  2072
  2073// rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
  2074(Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
  2075
  2076(Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
  2077
  2078// for rewriting results of some late-expanded rewrites (below)
  2079(SelectN [0] (MakeResult x ___)) => x
  2080(SelectN [1] (MakeResult x y ___)) => y
  2081(SelectN [2] (MakeResult x y z ___)) => z
  2082
  2083// for late-expanded calls, recognize newobject and remove zeroing and nilchecks
  2084(Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call))
  2085	&& isSameCall(call.Aux, "runtime.newobject")
  2086	=> mem
  2087
  2088(Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call))
  2089	&& isConstZero(x)
  2090	&& isSameCall(call.Aux, "runtime.newobject")
  2091	=> mem
  2092
  2093(Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call))
  2094	&& isConstZero(x)
  2095	&& isSameCall(call.Aux, "runtime.newobject")
  2096	=> mem
  2097
  2098(NilCheck ptr:(SelectN [0] call:(StaticLECall _ _)) _)
  2099	&& isSameCall(call.Aux, "runtime.newobject")
  2100	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2101	=> ptr
  2102
  2103(NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall _ _))) _)
  2104	&& isSameCall(call.Aux, "runtime.newobject")
  2105	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2106	=> ptr
  2107
  2108// Addresses of globals are always non-nil.
  2109(NilCheck          ptr:(Addr {_} (SB))    _) => ptr
  2110(NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr
  2111
  2112// for late-expanded calls, recognize memequal applied to a single constant byte
  2113// Support is limited by 1, 2, 4, 8 byte sizes
  2114(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
  2115  && isSameCall(callAux, "runtime.memequal")
  2116  && symIsRO(scon)
  2117  => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2118
  2119(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem)
  2120  && isSameCall(callAux, "runtime.memequal")
  2121  && symIsRO(scon)
  2122  => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2123
  2124(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem)
  2125  && isSameCall(callAux, "runtime.memequal")
  2126  && symIsRO(scon)
  2127  && canLoadUnaligned(config)
  2128  => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2129
  2130(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem)
  2131  && isSameCall(callAux, "runtime.memequal")
  2132  && symIsRO(scon)
  2133  && canLoadUnaligned(config)
  2134  => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2135
  2136(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem)
  2137  && isSameCall(callAux, "runtime.memequal")
  2138  && symIsRO(scon)
  2139  && canLoadUnaligned(config)
  2140  => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2141
  2142(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem)
  2143  && isSameCall(callAux, "runtime.memequal")
  2144  && symIsRO(scon)
  2145  && canLoadUnaligned(config)
  2146  => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2147
  2148(StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem)
  2149  && isSameCall(callAux, "runtime.memequal")
  2150  && symIsRO(scon)
  2151  && canLoadUnaligned(config) && config.PtrSize == 8
  2152  => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2153
  2154(StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem)
  2155  && isSameCall(callAux, "runtime.memequal")
  2156  && symIsRO(scon)
  2157  && canLoadUnaligned(config) && config.PtrSize == 8
  2158  => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2159
  2160(StaticLECall {callAux} _ _ (Const64 [0]) mem)
  2161  && isSameCall(callAux, "runtime.memequal")
  2162  => (MakeResult (ConstBool <typ.Bool> [true]) mem)
  2163
  2164(Static(Call|LECall) {callAux} p q _ mem)
  2165  && isSameCall(callAux, "runtime.memequal")
  2166  && isSamePtr(p, q)
  2167  => (MakeResult (ConstBool <typ.Bool> [true]) mem)
  2168
  2169// Turn known-size calls to memclrNoHeapPointers into a Zero.
  2170// Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details.
  2171(SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem))
  2172  && isInlinableMemclr(config, int64(c))
  2173  && isSameCall(sym, "runtime.memclrNoHeapPointers")
  2174  && call.Uses == 1
  2175  && clobber(call)
  2176  => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem)
  2177
  2178// Recognise make([]T, 0) and replace it with a pointer to the zerobase
  2179(StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem)
  2180	&& isSameCall(callAux, "runtime.makeslice")
  2181	=> (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem)
  2182
  2183// Evaluate constant address comparisons.
  2184(EqPtr  x x) => (ConstBool [true])
  2185(NeqPtr x x) => (ConstBool [false])
  2186(EqPtr  (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
  2187(EqPtr  (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
  2188(EqPtr  (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
  2189(NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
  2190(NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
  2191(NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
  2192(EqPtr  (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
  2193(EqPtr  (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
  2194(EqPtr  (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
  2195(NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
  2196(NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
  2197(NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
  2198(EqPtr  (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
  2199(NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
  2200(EqPtr  (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
  2201(NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
  2202(EqPtr  (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
  2203(NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
  2204(EqPtr  (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y])
  2205(NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y])
  2206
  2207(EqPtr  (LocalAddr _ _) (Addr _)) => (ConstBool [false])
  2208(EqPtr  (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
  2209(EqPtr  (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
  2210(EqPtr  (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
  2211(NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
  2212(NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
  2213(NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
  2214(NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
  2215
  2216// Simplify address comparisons.
  2217(EqPtr  (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
  2218(NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
  2219(EqPtr  (Const(32|64) [0]) p) => (Not (IsNonNil p))
  2220(NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
  2221(EqPtr  (ConstNil) p) => (Not (IsNonNil p))
  2222(NeqPtr (ConstNil) p) => (IsNonNil p)
  2223
  2224// Evaluate constant user nil checks.
  2225(IsNonNil (ConstNil)) => (ConstBool [false])
  2226(IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
  2227(IsNonNil          (Addr _)   ) => (ConstBool [true])
  2228(IsNonNil (Convert (Addr _) _)) => (ConstBool [true])
  2229(IsNonNil (LocalAddr _ _)) => (ConstBool [true])
  2230
  2231// Inline small or disjoint runtime.memmove calls with constant length.
  2232// See the comment in op Move in genericOps.go for discussion of the type.
  2233//
  2234// Note that we've lost any knowledge of the type and alignment requirements
  2235// of the source and destination. We only know the size, and that the type
  2236// contains no pointers.
  2237// The type of the move is not necessarily v.Args[0].Type().Elem()!
  2238// See issue 55122 for details.
  2239//
  2240// Because expand calls runs after prove, constants useful to this pattern may not appear.
  2241// Both versions need to exist; the memory and register variants.
  2242//
  2243// Match post-expansion calls, memory version.
  2244(SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem)))))
  2245	&& sz >= 0
  2246	&& isSameCall(sym, "runtime.memmove")
  2247	&& s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
  2248	&& isInlinableMemmove(dst, src, int64(sz), config)
  2249	&& clobber(s1, s2, s3, call)
  2250	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2251
  2252// Match post-expansion calls, register version.
  2253(SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
  2254	&& sz >= 0
  2255	&& call.Uses == 1 // this will exclude all calls with results
  2256	&& isSameCall(sym, "runtime.memmove")
  2257	&& isInlinableMemmove(dst, src, int64(sz), config)
  2258	&& clobber(call)
  2259	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2260
  2261// Match pre-expansion calls.
  2262(SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
  2263	&& sz >= 0
  2264	&& call.Uses == 1 // this will exclude all calls with results
  2265	&& isSameCall(sym, "runtime.memmove")
  2266	&& isInlinableMemmove(dst, src, int64(sz), config)
  2267	&& clobber(call)
  2268	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2269
  2270// De-virtualize late-expanded interface calls into late-expanded static calls.
  2271(InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym))
  2272
  2273// Move and Zero optimizations.
  2274// Move source and destination may overlap.
  2275
  2276// Convert Moves into Zeros when the source is known to be zeros.
  2277(Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
  2278	=> (Zero {t} [n] dst1 mem)
  2279(Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
  2280	=> (Zero {t} [n] dst1 mem)
  2281(Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
  2282
  2283// Don't Store to variables that are about to be overwritten by Move/Zero.
  2284(Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
  2285	&& isSamePtr(p1, p2) && store.Uses == 1
  2286	&& n >= o2 + t2.Size()
  2287	&& clobber(store)
  2288	=> (Zero {t1} [n] p1 mem)
  2289(Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
  2290	&& isSamePtr(dst1, dst2) && store.Uses == 1
  2291	&& n >= o2 + t2.Size()
  2292	&& disjoint(src1, n, op, t2.Size())
  2293	&& clobber(store)
  2294	=> (Move {t1} [n] dst1 src1 mem)
  2295
  2296// Don't Move to variables that are immediately completely overwritten.
  2297(Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
  2298	&& move.Uses == 1
  2299	&& isSamePtr(dst1, dst2)
  2300	&& clobber(move)
  2301	=> (Zero {t} [n] dst1 mem)
  2302(Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
  2303	&& move.Uses == 1
  2304	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2305	&& clobber(move)
  2306	=> (Move {t} [n] dst1 src1 mem)
  2307(Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2308	&& move.Uses == 1 && vardef.Uses == 1
  2309	&& isSamePtr(dst1, dst2)
  2310	&& clobber(move, vardef)
  2311	=> (Zero {t} [n] dst1 (VarDef {x} mem))
  2312(Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2313	&& move.Uses == 1 && vardef.Uses == 1
  2314	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2315	&& clobber(move, vardef)
  2316	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2317(Store {t1} op1:(OffPtr [o1] p1) d1
  2318	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2319		m3:(Move [n] p3 _ mem)))
  2320	&& m2.Uses == 1 && m3.Uses == 1
  2321	&& o1 == t2.Size()
  2322	&& n == t2.Size() + t1.Size()
  2323	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2324	&& clobber(m2, m3)
  2325	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2326(Store {t1} op1:(OffPtr [o1] p1) d1
  2327	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2328		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2329			m4:(Move [n] p4 _ mem))))
  2330	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2331	&& o2 == t3.Size()
  2332	&& o1-o2 == t2.Size()
  2333	&& n == t3.Size() + t2.Size() + t1.Size()
  2334	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2335	&& clobber(m2, m3, m4)
  2336	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2337(Store {t1} op1:(OffPtr [o1] p1) d1
  2338	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2339		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2340			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2341				m5:(Move [n] p5 _ mem)))))
  2342	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2343	&& o3 == t4.Size()
  2344	&& o2-o3 == t3.Size()
  2345	&& o1-o2 == t2.Size()
  2346	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2347	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2348	&& clobber(m2, m3, m4, m5)
  2349	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2350
  2351// Don't Zero variables that are immediately completely overwritten
  2352// before being accessed.
  2353(Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
  2354	&& zero.Uses == 1
  2355	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2356	&& clobber(zero)
  2357	=> (Move {t} [n] dst1 src1 mem)
  2358(Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
  2359	&& zero.Uses == 1 && vardef.Uses == 1
  2360	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2361	&& clobber(zero, vardef)
  2362	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2363(Store {t1} op1:(OffPtr [o1] p1) d1
  2364	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2365		m3:(Zero [n] p3 mem)))
  2366	&& m2.Uses == 1 && m3.Uses == 1
  2367	&& o1 == t2.Size()
  2368	&& n == t2.Size() + t1.Size()
  2369	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2370	&& clobber(m2, m3)
  2371	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2372(Store {t1} op1:(OffPtr [o1] p1) d1
  2373	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2374		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2375			m4:(Zero [n] p4 mem))))
  2376	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2377	&& o2 == t3.Size()
  2378	&& o1-o2 == t2.Size()
  2379	&& n == t3.Size() + t2.Size() + t1.Size()
  2380	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2381	&& clobber(m2, m3, m4)
  2382	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2383(Store {t1} op1:(OffPtr [o1] p1) d1
  2384	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2385		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2386			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2387				m5:(Zero [n] p5 mem)))))
  2388	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2389	&& o3 == t4.Size()
  2390	&& o2-o3 == t3.Size()
  2391	&& o1-o2 == t2.Size()
  2392	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2393	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2394	&& clobber(m2, m3, m4, m5)
  2395	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2396
  2397// Don't Move from memory if the values are likely to already be
  2398// in registers.
  2399(Move {t1} [n] dst p1
  2400	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2401		(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
  2402	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2403	&& t2.Alignment() <= t1.Alignment()
  2404	&& t3.Alignment() <= t1.Alignment()
  2405	&& registerizable(b, t2)
  2406	&& registerizable(b, t3)
  2407	&& o2 == t3.Size()
  2408	&& n == t2.Size() + t3.Size()
  2409	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2410		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2411(Move {t1} [n] dst p1
  2412	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2413		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2414			(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
  2415	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2416	&& t2.Alignment() <= t1.Alignment()
  2417	&& t3.Alignment() <= t1.Alignment()
  2418	&& t4.Alignment() <= t1.Alignment()
  2419	&& registerizable(b, t2)
  2420	&& registerizable(b, t3)
  2421	&& registerizable(b, t4)
  2422	&& o3 == t4.Size()
  2423	&& o2-o3 == t3.Size()
  2424	&& n == t2.Size() + t3.Size() + t4.Size()
  2425	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2426		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2427			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2428(Move {t1} [n] dst p1
  2429	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2430		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2431			(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2432				(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
  2433	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2434	&& t2.Alignment() <= t1.Alignment()
  2435	&& t3.Alignment() <= t1.Alignment()
  2436	&& t4.Alignment() <= t1.Alignment()
  2437	&& t5.Alignment() <= t1.Alignment()
  2438	&& registerizable(b, t2)
  2439	&& registerizable(b, t3)
  2440	&& registerizable(b, t4)
  2441	&& registerizable(b, t5)
  2442	&& o4 == t5.Size()
  2443	&& o3-o4 == t4.Size()
  2444	&& o2-o3 == t3.Size()
  2445	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2446	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2447		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2448			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2449				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2450
  2451// Same thing but with VarDef in the middle.
  2452(Move {t1} [n] dst p1
  2453	mem:(VarDef
  2454		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2455			(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
  2456	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2457	&& t2.Alignment() <= t1.Alignment()
  2458	&& t3.Alignment() <= t1.Alignment()
  2459	&& registerizable(b, t2)
  2460	&& registerizable(b, t3)
  2461	&& o2 == t3.Size()
  2462	&& n == t2.Size() + t3.Size()
  2463	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2464		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2465(Move {t1} [n] dst p1
  2466	mem:(VarDef
  2467		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2468			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2469				(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
  2470	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2471	&& t2.Alignment() <= t1.Alignment()
  2472	&& t3.Alignment() <= t1.Alignment()
  2473	&& t4.Alignment() <= t1.Alignment()
  2474	&& registerizable(b, t2)
  2475	&& registerizable(b, t3)
  2476	&& registerizable(b, t4)
  2477	&& o3 == t4.Size()
  2478	&& o2-o3 == t3.Size()
  2479	&& n == t2.Size() + t3.Size() + t4.Size()
  2480	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2481		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2482			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2483(Move {t1} [n] dst p1
  2484	mem:(VarDef
  2485		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2486			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2487				(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2488					(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
  2489	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2490	&& t2.Alignment() <= t1.Alignment()
  2491	&& t3.Alignment() <= t1.Alignment()
  2492	&& t4.Alignment() <= t1.Alignment()
  2493	&& t5.Alignment() <= t1.Alignment()
  2494	&& registerizable(b, t2)
  2495	&& registerizable(b, t3)
  2496	&& registerizable(b, t4)
  2497	&& registerizable(b, t5)
  2498	&& o4 == t5.Size()
  2499	&& o3-o4 == t4.Size()
  2500	&& o2-o3 == t3.Size()
  2501	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2502	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2503		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2504			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2505				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2506
  2507// Prefer to Zero and Store than to Move.
  2508(Move {t1} [n] dst p1
  2509	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2510		(Zero {t3} [n] p3 _)))
  2511	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2512	&& t2.Alignment() <= t1.Alignment()
  2513	&& t3.Alignment() <= t1.Alignment()
  2514	&& registerizable(b, t2)
  2515	&& n >= o2 + t2.Size()
  2516	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2517		(Zero {t1} [n] dst mem))
  2518(Move {t1} [n] dst p1
  2519	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2520		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2521			(Zero {t4} [n] p4 _))))
  2522	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2523	&& t2.Alignment() <= t1.Alignment()
  2524	&& t3.Alignment() <= t1.Alignment()
  2525	&& t4.Alignment() <= t1.Alignment()
  2526	&& registerizable(b, t2)
  2527	&& registerizable(b, t3)
  2528	&& n >= o2 + t2.Size()
  2529	&& n >= o3 + t3.Size()
  2530	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2531		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2532			(Zero {t1} [n] dst mem)))
  2533(Move {t1} [n] dst p1
  2534	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2535		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2536			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2537				(Zero {t5} [n] p5 _)))))
  2538	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2539	&& t2.Alignment() <= t1.Alignment()
  2540	&& t3.Alignment() <= t1.Alignment()
  2541	&& t4.Alignment() <= t1.Alignment()
  2542	&& t5.Alignment() <= t1.Alignment()
  2543	&& registerizable(b, t2)
  2544	&& registerizable(b, t3)
  2545	&& registerizable(b, t4)
  2546	&& n >= o2 + t2.Size()
  2547	&& n >= o3 + t3.Size()
  2548	&& n >= o4 + t4.Size()
  2549	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2550		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2551			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2552				(Zero {t1} [n] dst mem))))
  2553(Move {t1} [n] dst p1
  2554	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2555		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2556			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2557				(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2558					(Zero {t6} [n] p6 _))))))
  2559	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2560	&& t2.Alignment() <= t1.Alignment()
  2561	&& t3.Alignment() <= t1.Alignment()
  2562	&& t4.Alignment() <= t1.Alignment()
  2563	&& t5.Alignment() <= t1.Alignment()
  2564	&& t6.Alignment() <= t1.Alignment()
  2565	&& registerizable(b, t2)
  2566	&& registerizable(b, t3)
  2567	&& registerizable(b, t4)
  2568	&& registerizable(b, t5)
  2569	&& n >= o2 + t2.Size()
  2570	&& n >= o3 + t3.Size()
  2571	&& n >= o4 + t4.Size()
  2572	&& n >= o5 + t5.Size()
  2573	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2574		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2575			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2576				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2577					(Zero {t1} [n] dst mem)))))
  2578(Move {t1} [n] dst p1
  2579	mem:(VarDef
  2580		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2581			(Zero {t3} [n] p3 _))))
  2582	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2583	&& t2.Alignment() <= t1.Alignment()
  2584	&& t3.Alignment() <= t1.Alignment()
  2585	&& registerizable(b, t2)
  2586	&& n >= o2 + t2.Size()
  2587	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2588		(Zero {t1} [n] dst mem))
  2589(Move {t1} [n] dst p1
  2590	mem:(VarDef
  2591		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2592			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2593				(Zero {t4} [n] p4 _)))))
  2594	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2595	&& t2.Alignment() <= t1.Alignment()
  2596	&& t3.Alignment() <= t1.Alignment()
  2597	&& t4.Alignment() <= t1.Alignment()
  2598	&& registerizable(b, t2)
  2599	&& registerizable(b, t3)
  2600	&& n >= o2 + t2.Size()
  2601	&& n >= o3 + t3.Size()
  2602	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2603		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2604			(Zero {t1} [n] dst mem)))
  2605(Move {t1} [n] dst p1
  2606	mem:(VarDef
  2607		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2608			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2609				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2610					(Zero {t5} [n] p5 _))))))
  2611	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2612	&& t2.Alignment() <= t1.Alignment()
  2613	&& t3.Alignment() <= t1.Alignment()
  2614	&& t4.Alignment() <= t1.Alignment()
  2615	&& t5.Alignment() <= t1.Alignment()
  2616	&& registerizable(b, t2)
  2617	&& registerizable(b, t3)
  2618	&& registerizable(b, t4)
  2619	&& n >= o2 + t2.Size()
  2620	&& n >= o3 + t3.Size()
  2621	&& n >= o4 + t4.Size()
  2622	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2623		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2624			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2625				(Zero {t1} [n] dst mem))))
  2626(Move {t1} [n] dst p1
  2627	mem:(VarDef
  2628		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2629			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2630				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2631					(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2632						(Zero {t6} [n] p6 _)))))))
  2633	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2634	&& t2.Alignment() <= t1.Alignment()
  2635	&& t3.Alignment() <= t1.Alignment()
  2636	&& t4.Alignment() <= t1.Alignment()
  2637	&& t5.Alignment() <= t1.Alignment()
  2638	&& t6.Alignment() <= t1.Alignment()
  2639	&& registerizable(b, t2)
  2640	&& registerizable(b, t3)
  2641	&& registerizable(b, t4)
  2642	&& registerizable(b, t5)
  2643	&& n >= o2 + t2.Size()
  2644	&& n >= o3 + t3.Size()
  2645	&& n >= o4 + t4.Size()
  2646	&& n >= o5 + t5.Size()
  2647	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2648		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2649			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2650				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2651					(Zero {t1} [n] dst mem)))))
  2652
  2653(SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2654(SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2655
  2656// When rewriting append to growslice, we use as the new length the result of
  2657// growslice so that we don't have to spill/restore the new length around the growslice call.
  2658// The exception here is that if the new length is a constant, avoiding spilling it
  2659// is pointless and its constantness is sometimes useful for subsequent optimizations.
  2660// See issue 56440.
  2661// Note there are 2 rules here, one for the pre-decomposed []T result and one for
  2662// the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.)
  2663(SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen
  2664(SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen
  2665
  2666// Collapse moving A -> B -> C into just A -> C.
  2667// Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
  2668// This happens most commonly when B is an autotmp inserted earlier
  2669// during compilation to ensure correctness.
  2670// Take care that overlapping moves are preserved.
  2671// Restrict this optimization to the stack, to avoid duplicating loads from the heap;
  2672// see CL 145208 for discussion.
  2673(Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
  2674	&& t1.Compare(t2) == types.CMPeq
  2675	&& isSamePtr(tmp1, tmp2)
  2676	&& isStackPtr(src) && !isVolatile(src)
  2677	&& disjoint(src, s, tmp2, s)
  2678	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2679	=> (Move {t1} [s] dst src midmem)
  2680
  2681// Same, but for large types that require VarDefs.
  2682(Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
  2683	&& t1.Compare(t2) == types.CMPeq
  2684	&& isSamePtr(tmp1, tmp2)
  2685	&& isStackPtr(src) && !isVolatile(src)
  2686	&& disjoint(src, s, tmp2, s)
  2687	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2688	=> (Move {t1} [s] dst src midmem)
  2689
  2690// Don't zero the same bits twice.
  2691(Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
  2692(Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
  2693
  2694// Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
  2695// However, this rule is needed to prevent the previous rule from looping forever in such cases.
  2696(Move dst src mem) && isSamePtr(dst, src) => mem
  2697
  2698// Constant rotate detection.
  2699((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z)
  2700((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z)
  2701((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z)
  2702((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z)
  2703
  2704// Non-constant rotate detection.
  2705// We use shiftIsBounded to make sure that neither of the shifts are >64.
  2706// Note: these rules are subtle when the shift amounts are 0/64, as Go shifts
  2707// are different from most native shifts. But it works out.
  2708((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2709((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2710((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2711((Add64|Or64|Xor64) left:(Lsh64x8  x y) right:(Rsh64Ux8  x (Sub8  (Const8  [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2712
  2713((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2714((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2715((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2716((Add64|Or64|Xor64) right:(Rsh64Ux8  x y) left:(Lsh64x8  x z:(Sub8  (Const8  [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2717
  2718((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2719((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2720((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2721((Add32|Or32|Xor32) left:(Lsh32x8  x y) right:(Rsh32Ux8  x (Sub8  (Const8  [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2722
  2723((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2724((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2725((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2726((Add32|Or32|Xor32) right:(Rsh32Ux8  x y) left:(Lsh32x8  x z:(Sub8  (Const8  [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2727
  2728((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2729((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2730((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2731((Add16|Or16|Xor16) left:(Lsh16x8  x y) right:(Rsh16Ux8  x (Sub8  (Const8  [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2732
  2733((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2734((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2735((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2736((Add16|Or16|Xor16) right:(Rsh16Ux8  x y) left:(Lsh16x8  x z:(Sub8  (Const8  [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2737
  2738((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2739((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2740((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2741((Add8|Or8|Xor8) left:(Lsh8x8  x y) right:(Rsh8Ux8  x (Sub8  (Const8  [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2742
  2743((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2744((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2745((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2746((Add8|Or8|Xor8) right:(Rsh8Ux8  x y) left:(Lsh8x8  x z:(Sub8  (Const8  [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2747
  2748// Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y.
  2749(RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y)
  2750(RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y)
  2751(RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y)
  2752(RotateLeft8  x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7  == 7  => (RotateLeft8  x y)
  2753
  2754// Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y.
  2755(RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
  2756(RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
  2757(RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
  2758(RotateLeft8  x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7  == 7  => (RotateLeft8  x (Neg(64|32|16|8) <y.Type> y))
  2759
  2760// Rotating by y+c, with c a multiple of the value width, is the same as rotating by y.
  2761(RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y)
  2762(RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y)
  2763(RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y)
  2764(RotateLeft8  x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7  == 0 => (RotateLeft8  x y)
  2765
  2766// Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y.
  2767(RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
  2768(RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
  2769(RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
  2770(RotateLeft8  x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7  == 0 => (RotateLeft8  x (Neg(64|32|16|8) <y.Type> y))
  2771
  2772// Ensure we don't do Const64 rotates in a 32-bit system.
  2773(RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)]))
  2774(RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)]))
  2775(RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)]))
  2776(RotateLeft8  x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8  x (Const32 <t> [int32(c)]))
  2777
  2778// Rotating by c, then by d, is the same as rotating by c+d.
  2779// We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants.
  2780// This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width.
  2781(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d))
  2782(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d))
  2783(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d))
  2784(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8  <c.Type> c d))
  2785
  2786// Loading constant values from dictionaries and itabs.
  2787(Load <t> (OffPtr [off]                       (Addr {s} sb)       ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
  2788(Load <t> (OffPtr [off]              (Convert (Addr {s} sb) _)    ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
  2789(Load <t> (OffPtr [off] (ITab (IMake          (Addr {s} sb)    _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
  2790(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
  2791
  2792// Loading constant values from runtime._type.hash.
  2793(Load <t> (OffPtr [off]                       (Addr {sym} _)       ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
  2794(Load <t> (OffPtr [off]              (Convert (Addr {sym} _) _)    ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
  2795(Load <t> (OffPtr [off] (ITab (IMake          (Addr {sym} _)    _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
  2796(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
  2797
  2798// Calling cmpstring a second time with the same arguments in the
  2799// same memory state can reuse the results of the first call.
  2800// See issue 61725.
  2801// Note that this could pretty easily generalize to any pure function.
  2802(SelectN [0] (StaticLECall {f} x y (SelectN [1] c:(StaticLECall {g} x y mem))))
  2803  && isSameCall(f, "runtime.cmpstring")
  2804  && isSameCall(g, "runtime.cmpstring")
  2805=> @c.Block (SelectN [0] <typ.Int> c)
  2806
  2807// If we don't use the result of cmpstring, might as well not call it.
  2808// Note that this could pretty easily generalize to any pure function.
  2809(SelectN [1] c:(StaticLECall {f} _ _ mem)) && c.Uses == 1 && isSameCall(f, "runtime.cmpstring") && clobber(c) => mem

View as plain text