...

Source file src/cmd/compile/internal/staticinit/sched.go

Documentation: cmd/compile/internal/staticinit

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package staticinit
     6  
     7  import (
     8  	"fmt"
     9  	"go/constant"
    10  	"go/token"
    11  	"os"
    12  	"strings"
    13  
    14  	"cmd/compile/internal/base"
    15  	"cmd/compile/internal/ir"
    16  	"cmd/compile/internal/reflectdata"
    17  	"cmd/compile/internal/staticdata"
    18  	"cmd/compile/internal/typecheck"
    19  	"cmd/compile/internal/types"
    20  	"cmd/internal/obj"
    21  	"cmd/internal/objabi"
    22  	"cmd/internal/src"
    23  )
    24  
    25  type Entry struct {
    26  	Xoffset int64   // struct, array only
    27  	Expr    ir.Node // bytes of run-time computed expressions
    28  }
    29  
    30  type Plan struct {
    31  	E []Entry
    32  }
    33  
    34  // An Schedule is used to decompose assignment statements into
    35  // static and dynamic initialization parts. Static initializations are
    36  // handled by populating variables' linker symbol data, while dynamic
    37  // initializations are accumulated to be executed in order.
    38  type Schedule struct {
    39  	// Out is the ordered list of dynamic initialization
    40  	// statements.
    41  	Out []ir.Node
    42  
    43  	Plans map[ir.Node]*Plan
    44  	Temps map[ir.Node]*ir.Name
    45  
    46  	// seenMutation tracks whether we've seen an initialization
    47  	// expression that may have modified other package-scope variables
    48  	// within this package.
    49  	seenMutation bool
    50  }
    51  
    52  func (s *Schedule) append(n ir.Node) {
    53  	s.Out = append(s.Out, n)
    54  }
    55  
    56  // StaticInit adds an initialization statement n to the schedule.
    57  func (s *Schedule) StaticInit(n ir.Node) {
    58  	if !s.tryStaticInit(n) {
    59  		if base.Flag.Percent != 0 {
    60  			ir.Dump("StaticInit failed", n)
    61  		}
    62  		s.append(n)
    63  	}
    64  }
    65  
    66  // varToMapInit holds book-keeping state for global map initialization;
    67  // it records the init function created by the compiler to host the
    68  // initialization code for the map in question.
    69  var varToMapInit map[*ir.Name]*ir.Func
    70  
    71  // MapInitToVar is the inverse of VarToMapInit; it maintains a mapping
    72  // from a compiler-generated init function to the map the function is
    73  // initializing.
    74  var MapInitToVar map[*ir.Func]*ir.Name
    75  
    76  // recordFuncForVar establishes a mapping between global map var "v" and
    77  // outlined init function "fn" (and vice versa); so that we can use
    78  // the mappings later on to update relocations.
    79  func recordFuncForVar(v *ir.Name, fn *ir.Func) {
    80  	if varToMapInit == nil {
    81  		varToMapInit = make(map[*ir.Name]*ir.Func)
    82  		MapInitToVar = make(map[*ir.Func]*ir.Name)
    83  	}
    84  	varToMapInit[v] = fn
    85  	MapInitToVar[fn] = v
    86  }
    87  
    88  // allBlank reports whether every node in exprs is blank.
    89  func allBlank(exprs []ir.Node) bool {
    90  	for _, expr := range exprs {
    91  		if !ir.IsBlank(expr) {
    92  			return false
    93  		}
    94  	}
    95  	return true
    96  }
    97  
    98  // tryStaticInit attempts to statically execute an initialization
    99  // statement and reports whether it succeeded.
   100  func (s *Schedule) tryStaticInit(n ir.Node) bool {
   101  	var lhs []ir.Node
   102  	var rhs ir.Node
   103  
   104  	switch n.Op() {
   105  	default:
   106  		base.FatalfAt(n.Pos(), "unexpected initialization statement: %v", n)
   107  	case ir.OAS:
   108  		n := n.(*ir.AssignStmt)
   109  		lhs, rhs = []ir.Node{n.X}, n.Y
   110  	case ir.OAS2:
   111  		// Usually OAS2 has been rewritten to separate OASes by types2.
   112  		// What's left here is "var a, b = tmp1, tmp2" as a result from rewriting
   113  		// "var a, b = f()" that needs type conversion, which is not static.
   114  		n := n.(*ir.AssignListStmt)
   115  		for _, rhs := range n.Rhs {
   116  			for rhs.Op() == ir.OCONVNOP {
   117  				rhs = rhs.(*ir.ConvExpr).X
   118  			}
   119  			if name, ok := rhs.(*ir.Name); !ok || !name.AutoTemp() {
   120  				base.FatalfAt(n.Pos(), "unexpected rhs, not an autotmp: %+v", rhs)
   121  			}
   122  		}
   123  		return false
   124  	case ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV:
   125  		n := n.(*ir.AssignListStmt)
   126  		if len(n.Lhs) < 2 || len(n.Rhs) != 1 {
   127  			base.FatalfAt(n.Pos(), "unexpected shape for %v: %v", n.Op(), n)
   128  		}
   129  		lhs, rhs = n.Lhs, n.Rhs[0]
   130  	case ir.OCALLFUNC:
   131  		return false // outlined map init call; no mutations
   132  	}
   133  
   134  	if !s.seenMutation {
   135  		s.seenMutation = mayModifyPkgVar(rhs)
   136  	}
   137  
   138  	if allBlank(lhs) && !AnySideEffects(rhs) {
   139  		return true // discard
   140  	}
   141  
   142  	// Only worry about simple "l = r" assignments. The OAS2*
   143  	// assignments mostly necessitate dynamic execution anyway.
   144  	if len(lhs) > 1 {
   145  		return false
   146  	}
   147  
   148  	lno := ir.SetPos(n)
   149  	defer func() { base.Pos = lno }()
   150  
   151  	nam := lhs[0].(*ir.Name)
   152  	return s.StaticAssign(nam, 0, rhs, nam.Type())
   153  }
   154  
   155  // like staticassign but we are copying an already
   156  // initialized value r.
   157  func (s *Schedule) staticcopy(l *ir.Name, loff int64, rn *ir.Name, typ *types.Type) bool {
   158  	if rn.Class == ir.PFUNC {
   159  		// TODO if roff != 0 { panic }
   160  		staticdata.InitAddr(l, loff, staticdata.FuncLinksym(rn))
   161  		return true
   162  	}
   163  	if rn.Class != ir.PEXTERN || rn.Sym().Pkg != types.LocalPkg {
   164  		return false
   165  	}
   166  	if rn.Defn == nil {
   167  		// No explicit initialization value. Probably zeroed but perhaps
   168  		// supplied externally and of unknown value.
   169  		return false
   170  	}
   171  	if rn.Defn.Op() != ir.OAS {
   172  		return false
   173  	}
   174  	if rn.Type().IsString() { // perhaps overwritten by cmd/link -X (#34675)
   175  		return false
   176  	}
   177  	if rn.Embed != nil {
   178  		return false
   179  	}
   180  	orig := rn
   181  	r := rn.Defn.(*ir.AssignStmt).Y
   182  	if r == nil {
   183  		// types2.InitOrder doesn't include default initializers.
   184  		base.Fatalf("unexpected initializer: %v", rn.Defn)
   185  	}
   186  
   187  	// Variable may have been reassigned by a user-written function call
   188  	// that was invoked to initialize another global variable (#51913).
   189  	if s.seenMutation {
   190  		if base.Debug.StaticCopy != 0 {
   191  			base.WarnfAt(l.Pos(), "skipping static copy of %v+%v with %v", l, loff, r)
   192  		}
   193  		return false
   194  	}
   195  
   196  	for r.Op() == ir.OCONVNOP && !types.Identical(r.Type(), typ) {
   197  		r = r.(*ir.ConvExpr).X
   198  	}
   199  
   200  	switch r.Op() {
   201  	case ir.OMETHEXPR:
   202  		r = r.(*ir.SelectorExpr).FuncName()
   203  		fallthrough
   204  	case ir.ONAME:
   205  		r := r.(*ir.Name)
   206  		if s.staticcopy(l, loff, r, typ) {
   207  			return true
   208  		}
   209  		// We may have skipped past one or more OCONVNOPs, so
   210  		// use conv to ensure r is assignable to l (#13263).
   211  		dst := ir.Node(l)
   212  		if loff != 0 || !types.Identical(typ, l.Type()) {
   213  			dst = ir.NewNameOffsetExpr(base.Pos, l, loff, typ)
   214  		}
   215  		s.append(ir.NewAssignStmt(base.Pos, dst, typecheck.Conv(r, typ)))
   216  		return true
   217  
   218  	case ir.ONIL:
   219  		return true
   220  
   221  	case ir.OLITERAL:
   222  		if ir.IsZero(r) {
   223  			return true
   224  		}
   225  		staticdata.InitConst(l, loff, r, int(typ.Size()))
   226  		return true
   227  
   228  	case ir.OADDR:
   229  		r := r.(*ir.AddrExpr)
   230  		if a, ok := r.X.(*ir.Name); ok && a.Op() == ir.ONAME {
   231  			staticdata.InitAddr(l, loff, staticdata.GlobalLinksym(a))
   232  			return true
   233  		}
   234  
   235  	case ir.OPTRLIT:
   236  		r := r.(*ir.AddrExpr)
   237  		switch r.X.Op() {
   238  		case ir.OARRAYLIT, ir.OSLICELIT, ir.OSTRUCTLIT, ir.OMAPLIT:
   239  			// copy pointer
   240  			staticdata.InitAddr(l, loff, staticdata.GlobalLinksym(s.Temps[r]))
   241  			return true
   242  		}
   243  
   244  	case ir.OSLICELIT:
   245  		r := r.(*ir.CompLitExpr)
   246  		// copy slice
   247  		staticdata.InitSlice(l, loff, staticdata.GlobalLinksym(s.Temps[r]), r.Len)
   248  		return true
   249  
   250  	case ir.OARRAYLIT, ir.OSTRUCTLIT:
   251  		r := r.(*ir.CompLitExpr)
   252  		p := s.Plans[r]
   253  		for i := range p.E {
   254  			e := &p.E[i]
   255  			typ := e.Expr.Type()
   256  			if e.Expr.Op() == ir.OLITERAL || e.Expr.Op() == ir.ONIL {
   257  				staticdata.InitConst(l, loff+e.Xoffset, e.Expr, int(typ.Size()))
   258  				continue
   259  			}
   260  			x := e.Expr
   261  			if x.Op() == ir.OMETHEXPR {
   262  				x = x.(*ir.SelectorExpr).FuncName()
   263  			}
   264  			if x.Op() == ir.ONAME && s.staticcopy(l, loff+e.Xoffset, x.(*ir.Name), typ) {
   265  				continue
   266  			}
   267  			// Requires computation, but we're
   268  			// copying someone else's computation.
   269  			ll := ir.NewNameOffsetExpr(base.Pos, l, loff+e.Xoffset, typ)
   270  			rr := ir.NewNameOffsetExpr(base.Pos, orig, e.Xoffset, typ)
   271  			ir.SetPos(rr)
   272  			s.append(ir.NewAssignStmt(base.Pos, ll, rr))
   273  		}
   274  
   275  		return true
   276  	}
   277  
   278  	return false
   279  }
   280  
   281  func (s *Schedule) StaticAssign(l *ir.Name, loff int64, r ir.Node, typ *types.Type) bool {
   282  	if r == nil {
   283  		// No explicit initialization value. Either zero or supplied
   284  		// externally.
   285  		return true
   286  	}
   287  	for r.Op() == ir.OCONVNOP {
   288  		r = r.(*ir.ConvExpr).X
   289  	}
   290  
   291  	assign := func(pos src.XPos, a *ir.Name, aoff int64, v ir.Node) {
   292  		if s.StaticAssign(a, aoff, v, v.Type()) {
   293  			return
   294  		}
   295  		var lhs ir.Node
   296  		if ir.IsBlank(a) {
   297  			// Don't use NameOffsetExpr with blank (#43677).
   298  			lhs = ir.BlankNode
   299  		} else {
   300  			lhs = ir.NewNameOffsetExpr(pos, a, aoff, v.Type())
   301  		}
   302  		s.append(ir.NewAssignStmt(pos, lhs, v))
   303  	}
   304  
   305  	switch r.Op() {
   306  	case ir.ONAME:
   307  		r := r.(*ir.Name)
   308  		return s.staticcopy(l, loff, r, typ)
   309  
   310  	case ir.OMETHEXPR:
   311  		r := r.(*ir.SelectorExpr)
   312  		return s.staticcopy(l, loff, r.FuncName(), typ)
   313  
   314  	case ir.ONIL:
   315  		return true
   316  
   317  	case ir.OLITERAL:
   318  		if ir.IsZero(r) {
   319  			return true
   320  		}
   321  		staticdata.InitConst(l, loff, r, int(typ.Size()))
   322  		return true
   323  
   324  	case ir.OADDR:
   325  		r := r.(*ir.AddrExpr)
   326  		if name, offset, ok := StaticLoc(r.X); ok && name.Class == ir.PEXTERN {
   327  			staticdata.InitAddrOffset(l, loff, name.Linksym(), offset)
   328  			return true
   329  		}
   330  		fallthrough
   331  
   332  	case ir.OPTRLIT:
   333  		r := r.(*ir.AddrExpr)
   334  		switch r.X.Op() {
   335  		case ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT, ir.OSTRUCTLIT:
   336  			// Init pointer.
   337  			a := StaticName(r.X.Type())
   338  
   339  			s.Temps[r] = a
   340  			staticdata.InitAddr(l, loff, a.Linksym())
   341  
   342  			// Init underlying literal.
   343  			assign(base.Pos, a, 0, r.X)
   344  			return true
   345  		}
   346  		//dump("not static ptrlit", r);
   347  
   348  	case ir.OSTR2BYTES:
   349  		r := r.(*ir.ConvExpr)
   350  		if l.Class == ir.PEXTERN && r.X.Op() == ir.OLITERAL {
   351  			sval := ir.StringVal(r.X)
   352  			staticdata.InitSliceBytes(l, loff, sval)
   353  			return true
   354  		}
   355  
   356  	case ir.OSLICELIT:
   357  		r := r.(*ir.CompLitExpr)
   358  		s.initplan(r)
   359  		// Init slice.
   360  		ta := types.NewArray(r.Type().Elem(), r.Len)
   361  		ta.SetNoalg(true)
   362  		a := StaticName(ta)
   363  		s.Temps[r] = a
   364  		staticdata.InitSlice(l, loff, a.Linksym(), r.Len)
   365  		// Fall through to init underlying array.
   366  		l = a
   367  		loff = 0
   368  		fallthrough
   369  
   370  	case ir.OARRAYLIT, ir.OSTRUCTLIT:
   371  		r := r.(*ir.CompLitExpr)
   372  		s.initplan(r)
   373  
   374  		p := s.Plans[r]
   375  		for i := range p.E {
   376  			e := &p.E[i]
   377  			if e.Expr.Op() == ir.OLITERAL || e.Expr.Op() == ir.ONIL {
   378  				staticdata.InitConst(l, loff+e.Xoffset, e.Expr, int(e.Expr.Type().Size()))
   379  				continue
   380  			}
   381  			ir.SetPos(e.Expr)
   382  			assign(base.Pos, l, loff+e.Xoffset, e.Expr)
   383  		}
   384  
   385  		return true
   386  
   387  	case ir.OMAPLIT:
   388  		break
   389  
   390  	case ir.OCLOSURE:
   391  		r := r.(*ir.ClosureExpr)
   392  		if ir.IsTrivialClosure(r) {
   393  			if base.Debug.Closure > 0 {
   394  				base.WarnfAt(r.Pos(), "closure converted to global")
   395  			}
   396  			// Issue 59680: if the closure we're looking at was produced
   397  			// by inlining, it could be marked as hidden, which we don't
   398  			// want (moving the func to a static init will effectively
   399  			// hide it from escape analysis). Mark as non-hidden here.
   400  			// so that it will participated in escape analysis.
   401  			r.Func.SetIsHiddenClosure(false)
   402  			// Closures with no captured variables are globals,
   403  			// so the assignment can be done at link time.
   404  			// TODO if roff != 0 { panic }
   405  			staticdata.InitAddr(l, loff, staticdata.FuncLinksym(r.Func.Nname))
   406  			return true
   407  		}
   408  		ir.ClosureDebugRuntimeCheck(r)
   409  
   410  	case ir.OCONVIFACE:
   411  		// This logic is mirrored in isStaticCompositeLiteral.
   412  		// If you change something here, change it there, and vice versa.
   413  
   414  		// Determine the underlying concrete type and value we are converting from.
   415  		r := r.(*ir.ConvExpr)
   416  		val := ir.Node(r)
   417  		for val.Op() == ir.OCONVIFACE {
   418  			val = val.(*ir.ConvExpr).X
   419  		}
   420  
   421  		if val.Type().IsInterface() {
   422  			// val is an interface type.
   423  			// If val is nil, we can statically initialize l;
   424  			// both words are zero and so there no work to do, so report success.
   425  			// If val is non-nil, we have no concrete type to record,
   426  			// and we won't be able to statically initialize its value, so report failure.
   427  			return val.Op() == ir.ONIL
   428  		}
   429  
   430  		if val.Type().HasShape() {
   431  			// See comment in cmd/compile/internal/walk/convert.go:walkConvInterface
   432  			return false
   433  		}
   434  
   435  		reflectdata.MarkTypeUsedInInterface(val.Type(), l.Linksym())
   436  
   437  		var itab *ir.AddrExpr
   438  		if typ.IsEmptyInterface() {
   439  			itab = reflectdata.TypePtrAt(base.Pos, val.Type())
   440  		} else {
   441  			itab = reflectdata.ITabAddrAt(base.Pos, val.Type(), typ)
   442  		}
   443  
   444  		// Create a copy of l to modify while we emit data.
   445  
   446  		// Emit itab, advance offset.
   447  		staticdata.InitAddr(l, loff, itab.X.(*ir.LinksymOffsetExpr).Linksym)
   448  
   449  		// Emit data.
   450  		if types.IsDirectIface(val.Type()) {
   451  			if val.Op() == ir.ONIL {
   452  				// Nil is zero, nothing to do.
   453  				return true
   454  			}
   455  			// Copy val directly into n.
   456  			ir.SetPos(val)
   457  			assign(base.Pos, l, loff+int64(types.PtrSize), val)
   458  		} else {
   459  			// Construct temp to hold val, write pointer to temp into n.
   460  			a := StaticName(val.Type())
   461  			s.Temps[val] = a
   462  			assign(base.Pos, a, 0, val)
   463  			staticdata.InitAddr(l, loff+int64(types.PtrSize), a.Linksym())
   464  		}
   465  
   466  		return true
   467  
   468  	case ir.OINLCALL:
   469  		r := r.(*ir.InlinedCallExpr)
   470  		return s.staticAssignInlinedCall(l, loff, r, typ)
   471  	}
   472  
   473  	if base.Flag.Percent != 0 {
   474  		ir.Dump("not static", r)
   475  	}
   476  	return false
   477  }
   478  
   479  func (s *Schedule) initplan(n ir.Node) {
   480  	if s.Plans[n] != nil {
   481  		return
   482  	}
   483  	p := new(Plan)
   484  	s.Plans[n] = p
   485  	switch n.Op() {
   486  	default:
   487  		base.Fatalf("initplan")
   488  
   489  	case ir.OARRAYLIT, ir.OSLICELIT:
   490  		n := n.(*ir.CompLitExpr)
   491  		var k int64
   492  		for _, a := range n.List {
   493  			if a.Op() == ir.OKEY {
   494  				kv := a.(*ir.KeyExpr)
   495  				k = typecheck.IndexConst(kv.Key)
   496  				if k < 0 {
   497  					base.Fatalf("initplan arraylit: invalid index %v", kv.Key)
   498  				}
   499  				a = kv.Value
   500  			}
   501  			s.addvalue(p, k*n.Type().Elem().Size(), a)
   502  			k++
   503  		}
   504  
   505  	case ir.OSTRUCTLIT:
   506  		n := n.(*ir.CompLitExpr)
   507  		for _, a := range n.List {
   508  			if a.Op() != ir.OSTRUCTKEY {
   509  				base.Fatalf("initplan structlit")
   510  			}
   511  			a := a.(*ir.StructKeyExpr)
   512  			if a.Sym().IsBlank() {
   513  				continue
   514  			}
   515  			s.addvalue(p, a.Field.Offset, a.Value)
   516  		}
   517  
   518  	case ir.OMAPLIT:
   519  		n := n.(*ir.CompLitExpr)
   520  		for _, a := range n.List {
   521  			if a.Op() != ir.OKEY {
   522  				base.Fatalf("initplan maplit")
   523  			}
   524  			a := a.(*ir.KeyExpr)
   525  			s.addvalue(p, -1, a.Value)
   526  		}
   527  	}
   528  }
   529  
   530  func (s *Schedule) addvalue(p *Plan, xoffset int64, n ir.Node) {
   531  	// special case: zero can be dropped entirely
   532  	if ir.IsZero(n) {
   533  		return
   534  	}
   535  
   536  	// special case: inline struct and array (not slice) literals
   537  	if isvaluelit(n) {
   538  		s.initplan(n)
   539  		q := s.Plans[n]
   540  		for _, qe := range q.E {
   541  			// qe is a copy; we are not modifying entries in q.E
   542  			qe.Xoffset += xoffset
   543  			p.E = append(p.E, qe)
   544  		}
   545  		return
   546  	}
   547  
   548  	// add to plan
   549  	p.E = append(p.E, Entry{Xoffset: xoffset, Expr: n})
   550  }
   551  
   552  func (s *Schedule) staticAssignInlinedCall(l *ir.Name, loff int64, call *ir.InlinedCallExpr, typ *types.Type) bool {
   553  	if base.Debug.InlStaticInit == 0 {
   554  		return false
   555  	}
   556  
   557  	// Handle the special case of an inlined call of
   558  	// a function body with a single return statement,
   559  	// which turns into a single assignment plus a goto.
   560  	//
   561  	// For example code like this:
   562  	//
   563  	//	type T struct{ x int }
   564  	//	func F(x int) *T { return &T{x} }
   565  	//	var Global = F(400)
   566  	//
   567  	// turns into IR like this:
   568  	//
   569  	// 	INLCALL-init
   570  	// 	.   AS2-init
   571  	// 	.   .   DCL # x.go:18:13
   572  	// 	.   .   .   NAME-p.x Class:PAUTO Offset:0 InlFormal OnStack Used int tc(1) # x.go:14:9,x.go:18:13
   573  	// 	.   AS2 Def tc(1) # x.go:18:13
   574  	// 	.   AS2-Lhs
   575  	// 	.   .   NAME-p.x Class:PAUTO Offset:0 InlFormal OnStack Used int tc(1) # x.go:14:9,x.go:18:13
   576  	// 	.   AS2-Rhs
   577  	// 	.   .   LITERAL-400 int tc(1) # x.go:18:14
   578  	// 	.   INLMARK Index:1 # +x.go:18:13
   579  	// 	INLCALL PTR-*T tc(1) # x.go:18:13
   580  	// 	INLCALL-Body
   581  	// 	.   BLOCK tc(1) # x.go:18:13
   582  	// 	.   BLOCK-List
   583  	// 	.   .   DCL tc(1) # x.go:18:13
   584  	// 	.   .   .   NAME-p.~R0 Class:PAUTO Offset:0 OnStack Used PTR-*T tc(1) # x.go:18:13
   585  	// 	.   .   AS2 tc(1) # x.go:18:13
   586  	// 	.   .   AS2-Lhs
   587  	// 	.   .   .   NAME-p.~R0 Class:PAUTO Offset:0 OnStack Used PTR-*T tc(1) # x.go:18:13
   588  	// 	.   .   AS2-Rhs
   589  	// 	.   .   .   INLINED RETURN ARGUMENT HERE
   590  	// 	.   .   GOTO p..i1 tc(1) # x.go:18:13
   591  	// 	.   LABEL p..i1 # x.go:18:13
   592  	// 	INLCALL-ReturnVars
   593  	// 	.   NAME-p.~R0 Class:PAUTO Offset:0 OnStack Used PTR-*T tc(1) # x.go:18:13
   594  	//
   595  	// In non-unified IR, the tree is slightly different:
   596  	//  - if there are no arguments to the inlined function,
   597  	//    the INLCALL-init omits the AS2.
   598  	//  - the DCL inside BLOCK is on the AS2's init list,
   599  	//    not its own statement in the top level of the BLOCK.
   600  	//
   601  	// If the init values are side-effect-free and each either only
   602  	// appears once in the function body or is safely repeatable,
   603  	// then we inline the value expressions into the return argument
   604  	// and then call StaticAssign to handle that copy.
   605  	//
   606  	// This handles simple cases like
   607  	//
   608  	//	var myError = errors.New("mine")
   609  	//
   610  	// where errors.New is
   611  	//
   612  	//	func New(text string) error {
   613  	//		return &errorString{text}
   614  	//	}
   615  	//
   616  	// We could make things more sophisticated but this kind of initializer
   617  	// is the most important case for us to get right.
   618  
   619  	init := call.Init()
   620  	var as2init *ir.AssignListStmt
   621  	if len(init) == 2 && init[0].Op() == ir.OAS2 && init[1].Op() == ir.OINLMARK {
   622  		as2init = init[0].(*ir.AssignListStmt)
   623  	} else if len(init) == 1 && init[0].Op() == ir.OINLMARK {
   624  		as2init = new(ir.AssignListStmt)
   625  	} else {
   626  		return false
   627  	}
   628  	if len(call.Body) != 2 || call.Body[0].Op() != ir.OBLOCK || call.Body[1].Op() != ir.OLABEL {
   629  		return false
   630  	}
   631  	label := call.Body[1].(*ir.LabelStmt).Label
   632  	block := call.Body[0].(*ir.BlockStmt)
   633  	list := block.List
   634  	var dcl *ir.Decl
   635  	if len(list) == 3 && list[0].Op() == ir.ODCL {
   636  		dcl = list[0].(*ir.Decl)
   637  		list = list[1:]
   638  	}
   639  	if len(list) != 2 ||
   640  		list[0].Op() != ir.OAS2 ||
   641  		list[1].Op() != ir.OGOTO ||
   642  		list[1].(*ir.BranchStmt).Label != label {
   643  		return false
   644  	}
   645  	as2body := list[0].(*ir.AssignListStmt)
   646  	if dcl == nil {
   647  		ainit := as2body.Init()
   648  		if len(ainit) != 1 || ainit[0].Op() != ir.ODCL {
   649  			return false
   650  		}
   651  		dcl = ainit[0].(*ir.Decl)
   652  	}
   653  	if len(as2body.Lhs) != 1 || as2body.Lhs[0] != dcl.X {
   654  		return false
   655  	}
   656  
   657  	// Can't remove the parameter variables if an address is taken.
   658  	for _, v := range as2init.Lhs {
   659  		if v.(*ir.Name).Addrtaken() {
   660  			return false
   661  		}
   662  	}
   663  	// Can't move the computation of the args if they have side effects.
   664  	for _, r := range as2init.Rhs {
   665  		if AnySideEffects(r) {
   666  			return false
   667  		}
   668  	}
   669  
   670  	// Can only substitute arg for param if param is used
   671  	// at most once or is repeatable.
   672  	count := make(map[*ir.Name]int)
   673  	for _, x := range as2init.Lhs {
   674  		count[x.(*ir.Name)] = 0
   675  	}
   676  
   677  	hasNonTrivialClosure := false
   678  	ir.Visit(as2body.Rhs[0], func(n ir.Node) {
   679  		if name, ok := n.(*ir.Name); ok {
   680  			if c, ok := count[name]; ok {
   681  				count[name] = c + 1
   682  			}
   683  		}
   684  		if clo, ok := n.(*ir.ClosureExpr); ok {
   685  			hasNonTrivialClosure = hasNonTrivialClosure || !ir.IsTrivialClosure(clo)
   686  		}
   687  	})
   688  
   689  	// If there's a non-trivial closure, it has captured the param,
   690  	// so we can't substitute arg for param.
   691  	if hasNonTrivialClosure {
   692  		return false
   693  	}
   694  
   695  	for name, c := range count {
   696  		if c > 1 {
   697  			// Check whether corresponding initializer can be repeated.
   698  			// Something like 1 can be; make(chan int) or &T{} cannot,
   699  			// because they need to evaluate to the same result in each use.
   700  			for i, n := range as2init.Lhs {
   701  				if n == name && !canRepeat(as2init.Rhs[i]) {
   702  					return false
   703  				}
   704  			}
   705  		}
   706  	}
   707  
   708  	// Possible static init.
   709  	// Build tree with args substituted for params and try it.
   710  	args := make(map[*ir.Name]ir.Node)
   711  	for i, v := range as2init.Lhs {
   712  		if ir.IsBlank(v) {
   713  			continue
   714  		}
   715  		args[v.(*ir.Name)] = as2init.Rhs[i]
   716  	}
   717  	r, ok := subst(as2body.Rhs[0], args)
   718  	if !ok {
   719  		return false
   720  	}
   721  	ok = s.StaticAssign(l, loff, r, typ)
   722  
   723  	if ok && base.Flag.Percent != 0 {
   724  		ir.Dump("static inlined-LEFT", l)
   725  		ir.Dump("static inlined-ORIG", call)
   726  		ir.Dump("static inlined-RIGHT", r)
   727  	}
   728  	return ok
   729  }
   730  
   731  // from here down is the walk analysis
   732  // of composite literals.
   733  // most of the work is to generate
   734  // data statements for the constant
   735  // part of the composite literal.
   736  
   737  var statuniqgen int // name generator for static temps
   738  
   739  // StaticName returns a name backed by a (writable) static data symbol.
   740  // Use readonlystaticname for read-only node.
   741  func StaticName(t *types.Type) *ir.Name {
   742  	// Don't use LookupNum; it interns the resulting string, but these are all unique.
   743  	sym := typecheck.Lookup(fmt.Sprintf("%s%d", obj.StaticNamePref, statuniqgen))
   744  	statuniqgen++
   745  
   746  	n := ir.NewNameAt(base.Pos, sym, t)
   747  	sym.Def = n
   748  
   749  	n.Class = ir.PEXTERN
   750  	typecheck.Target.Externs = append(typecheck.Target.Externs, n)
   751  
   752  	n.Linksym().Set(obj.AttrStatic, true)
   753  	return n
   754  }
   755  
   756  // StaticLoc returns the static address of n, if n has one, or else nil.
   757  func StaticLoc(n ir.Node) (name *ir.Name, offset int64, ok bool) {
   758  	if n == nil {
   759  		return nil, 0, false
   760  	}
   761  
   762  	switch n.Op() {
   763  	case ir.ONAME:
   764  		n := n.(*ir.Name)
   765  		return n, 0, true
   766  
   767  	case ir.OMETHEXPR:
   768  		n := n.(*ir.SelectorExpr)
   769  		return StaticLoc(n.FuncName())
   770  
   771  	case ir.ODOT:
   772  		n := n.(*ir.SelectorExpr)
   773  		if name, offset, ok = StaticLoc(n.X); !ok {
   774  			break
   775  		}
   776  		offset += n.Offset()
   777  		return name, offset, true
   778  
   779  	case ir.OINDEX:
   780  		n := n.(*ir.IndexExpr)
   781  		if n.X.Type().IsSlice() {
   782  			break
   783  		}
   784  		if name, offset, ok = StaticLoc(n.X); !ok {
   785  			break
   786  		}
   787  		l := getlit(n.Index)
   788  		if l < 0 {
   789  			break
   790  		}
   791  
   792  		// Check for overflow.
   793  		if n.Type().Size() != 0 && types.MaxWidth/n.Type().Size() <= int64(l) {
   794  			break
   795  		}
   796  		offset += int64(l) * n.Type().Size()
   797  		return name, offset, true
   798  	}
   799  
   800  	return nil, 0, false
   801  }
   802  
   803  func isSideEffect(n ir.Node) bool {
   804  	switch n.Op() {
   805  	// Assume side effects unless we know otherwise.
   806  	default:
   807  		return true
   808  
   809  	// No side effects here (arguments are checked separately).
   810  	case ir.ONAME,
   811  		ir.ONONAME,
   812  		ir.OTYPE,
   813  		ir.OLITERAL,
   814  		ir.ONIL,
   815  		ir.OADD,
   816  		ir.OSUB,
   817  		ir.OOR,
   818  		ir.OXOR,
   819  		ir.OADDSTR,
   820  		ir.OADDR,
   821  		ir.OANDAND,
   822  		ir.OBYTES2STR,
   823  		ir.ORUNES2STR,
   824  		ir.OSTR2BYTES,
   825  		ir.OSTR2RUNES,
   826  		ir.OCAP,
   827  		ir.OCOMPLIT,
   828  		ir.OMAPLIT,
   829  		ir.OSTRUCTLIT,
   830  		ir.OARRAYLIT,
   831  		ir.OSLICELIT,
   832  		ir.OPTRLIT,
   833  		ir.OCONV,
   834  		ir.OCONVIFACE,
   835  		ir.OCONVNOP,
   836  		ir.ODOT,
   837  		ir.OEQ,
   838  		ir.ONE,
   839  		ir.OLT,
   840  		ir.OLE,
   841  		ir.OGT,
   842  		ir.OGE,
   843  		ir.OKEY,
   844  		ir.OSTRUCTKEY,
   845  		ir.OLEN,
   846  		ir.OMUL,
   847  		ir.OLSH,
   848  		ir.ORSH,
   849  		ir.OAND,
   850  		ir.OANDNOT,
   851  		ir.ONEW,
   852  		ir.ONOT,
   853  		ir.OBITNOT,
   854  		ir.OPLUS,
   855  		ir.ONEG,
   856  		ir.OOROR,
   857  		ir.OPAREN,
   858  		ir.ORUNESTR,
   859  		ir.OREAL,
   860  		ir.OIMAG,
   861  		ir.OCOMPLEX:
   862  		return false
   863  
   864  	// Only possible side effect is division by zero.
   865  	case ir.ODIV, ir.OMOD:
   866  		n := n.(*ir.BinaryExpr)
   867  		if n.Y.Op() != ir.OLITERAL || constant.Sign(n.Y.Val()) == 0 {
   868  			return true
   869  		}
   870  
   871  	// Only possible side effect is panic on invalid size,
   872  	// but many makechan and makemap use size zero, which is definitely OK.
   873  	case ir.OMAKECHAN, ir.OMAKEMAP:
   874  		n := n.(*ir.MakeExpr)
   875  		if !ir.IsConst(n.Len, constant.Int) || constant.Sign(n.Len.Val()) != 0 {
   876  			return true
   877  		}
   878  
   879  	// Only possible side effect is panic on invalid size.
   880  	// TODO(rsc): Merge with previous case (probably breaks toolstash -cmp).
   881  	case ir.OMAKESLICE, ir.OMAKESLICECOPY:
   882  		return true
   883  	}
   884  	return false
   885  }
   886  
   887  // AnySideEffects reports whether n contains any operations that could have observable side effects.
   888  func AnySideEffects(n ir.Node) bool {
   889  	return ir.Any(n, isSideEffect)
   890  }
   891  
   892  // mayModifyPkgVar reports whether expression n may modify any
   893  // package-scope variables declared within the current package.
   894  func mayModifyPkgVar(n ir.Node) bool {
   895  	// safeLHS reports whether the assigned-to variable lhs is either a
   896  	// local variable or a global from another package.
   897  	safeLHS := func(lhs ir.Node) bool {
   898  		outer := ir.OuterValue(lhs)
   899  		// "*p = ..." should be safe if p is a local variable.
   900  		// TODO: Should ir.OuterValue handle this?
   901  		for outer.Op() == ir.ODEREF {
   902  			outer = outer.(*ir.StarExpr).X
   903  		}
   904  		v, ok := outer.(*ir.Name)
   905  		return ok && v.Op() == ir.ONAME && !(v.Class == ir.PEXTERN && v.Sym().Pkg == types.LocalPkg)
   906  	}
   907  
   908  	return ir.Any(n, func(n ir.Node) bool {
   909  		switch n.Op() {
   910  		case ir.OCALLFUNC, ir.OCALLINTER:
   911  			return !ir.IsFuncPCIntrinsic(n.(*ir.CallExpr))
   912  
   913  		case ir.OAPPEND, ir.OCLEAR, ir.OCOPY:
   914  			return true // could mutate a global array
   915  
   916  		case ir.OASOP:
   917  			n := n.(*ir.AssignOpStmt)
   918  			if !safeLHS(n.X) {
   919  				return true
   920  			}
   921  
   922  		case ir.OAS:
   923  			n := n.(*ir.AssignStmt)
   924  			if !safeLHS(n.X) {
   925  				return true
   926  			}
   927  
   928  		case ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV:
   929  			n := n.(*ir.AssignListStmt)
   930  			for _, lhs := range n.Lhs {
   931  				if !safeLHS(lhs) {
   932  					return true
   933  				}
   934  			}
   935  		}
   936  
   937  		return false
   938  	})
   939  }
   940  
   941  // canRepeat reports whether executing n multiple times has the same effect as
   942  // assigning n to a single variable and using that variable multiple times.
   943  func canRepeat(n ir.Node) bool {
   944  	bad := func(n ir.Node) bool {
   945  		if isSideEffect(n) {
   946  			return true
   947  		}
   948  		switch n.Op() {
   949  		case ir.OMAKECHAN,
   950  			ir.OMAKEMAP,
   951  			ir.OMAKESLICE,
   952  			ir.OMAKESLICECOPY,
   953  			ir.OMAPLIT,
   954  			ir.ONEW,
   955  			ir.OPTRLIT,
   956  			ir.OSLICELIT,
   957  			ir.OSTR2BYTES,
   958  			ir.OSTR2RUNES:
   959  			return true
   960  		}
   961  		return false
   962  	}
   963  	return !ir.Any(n, bad)
   964  }
   965  
   966  func getlit(lit ir.Node) int {
   967  	if ir.IsSmallIntConst(lit) {
   968  		return int(ir.Int64Val(lit))
   969  	}
   970  	return -1
   971  }
   972  
   973  func isvaluelit(n ir.Node) bool {
   974  	return n.Op() == ir.OARRAYLIT || n.Op() == ir.OSTRUCTLIT
   975  }
   976  
   977  func subst(n ir.Node, m map[*ir.Name]ir.Node) (ir.Node, bool) {
   978  	valid := true
   979  	var edit func(ir.Node) ir.Node
   980  	edit = func(x ir.Node) ir.Node {
   981  		switch x.Op() {
   982  		case ir.ONAME:
   983  			x := x.(*ir.Name)
   984  			if v, ok := m[x]; ok {
   985  				return ir.DeepCopy(v.Pos(), v)
   986  			}
   987  			return x
   988  		case ir.ONONAME, ir.OLITERAL, ir.ONIL, ir.OTYPE:
   989  			return x
   990  		}
   991  		x = ir.Copy(x)
   992  		ir.EditChildrenWithHidden(x, edit)
   993  
   994  		// TODO: handle more operations, see details discussion in go.dev/cl/466277.
   995  		switch x.Op() {
   996  		case ir.OCONV:
   997  			x := x.(*ir.ConvExpr)
   998  			if x.X.Op() == ir.OLITERAL {
   999  				if x, ok := truncate(x.X, x.Type()); ok {
  1000  					return x
  1001  				}
  1002  				valid = false
  1003  				return x
  1004  			}
  1005  		case ir.OADDSTR:
  1006  			return addStr(x.(*ir.AddStringExpr))
  1007  		}
  1008  		return x
  1009  	}
  1010  	n = edit(n)
  1011  	return n, valid
  1012  }
  1013  
  1014  // truncate returns the result of force converting c to type t,
  1015  // truncating its value as needed, like a conversion of a variable.
  1016  // If the conversion is too difficult, truncate returns nil, false.
  1017  func truncate(c ir.Node, t *types.Type) (ir.Node, bool) {
  1018  	ct := c.Type()
  1019  	cv := c.Val()
  1020  	if ct.Kind() != t.Kind() {
  1021  		switch {
  1022  		default:
  1023  			// Note: float -> float/integer and complex -> complex are valid but subtle.
  1024  			// For example a float32(float64 1e300) evaluates to +Inf at runtime
  1025  			// and the compiler doesn't have any concept of +Inf, so that would
  1026  			// have to be left for runtime code evaluation.
  1027  			// For now
  1028  			return nil, false
  1029  
  1030  		case ct.IsInteger() && t.IsInteger():
  1031  			// truncate or sign extend
  1032  			bits := t.Size() * 8
  1033  			cv = constant.BinaryOp(cv, token.AND, constant.MakeUint64(1<<bits-1))
  1034  			if t.IsSigned() && constant.Compare(cv, token.GEQ, constant.MakeUint64(1<<(bits-1))) {
  1035  				cv = constant.BinaryOp(cv, token.OR, constant.MakeInt64(-1<<(bits-1)))
  1036  			}
  1037  		}
  1038  	}
  1039  	c = ir.NewConstExpr(cv, c)
  1040  	c.SetType(t)
  1041  	return c, true
  1042  }
  1043  
  1044  func addStr(n *ir.AddStringExpr) ir.Node {
  1045  	// Merge adjacent constants in the argument list.
  1046  	s := n.List
  1047  	need := 0
  1048  	for i := 0; i < len(s); i++ {
  1049  		if i == 0 || !ir.IsConst(s[i-1], constant.String) || !ir.IsConst(s[i], constant.String) {
  1050  			// Can't merge s[i] into s[i-1]; need a slot in the list.
  1051  			need++
  1052  		}
  1053  	}
  1054  	if need == len(s) {
  1055  		return n
  1056  	}
  1057  	if need == 1 {
  1058  		var strs []string
  1059  		for _, c := range s {
  1060  			strs = append(strs, ir.StringVal(c))
  1061  		}
  1062  		return ir.NewConstExpr(constant.MakeString(strings.Join(strs, "")), n)
  1063  	}
  1064  	newList := make([]ir.Node, 0, need)
  1065  	for i := 0; i < len(s); i++ {
  1066  		if ir.IsConst(s[i], constant.String) && i+1 < len(s) && ir.IsConst(s[i+1], constant.String) {
  1067  			// merge from i up to but not including i2
  1068  			var strs []string
  1069  			i2 := i
  1070  			for i2 < len(s) && ir.IsConst(s[i2], constant.String) {
  1071  				strs = append(strs, ir.StringVal(s[i2]))
  1072  				i2++
  1073  			}
  1074  
  1075  			newList = append(newList, ir.NewConstExpr(constant.MakeString(strings.Join(strs, "")), s[i]))
  1076  			i = i2 - 1
  1077  		} else {
  1078  			newList = append(newList, s[i])
  1079  		}
  1080  	}
  1081  
  1082  	nn := ir.Copy(n).(*ir.AddStringExpr)
  1083  	nn.List = newList
  1084  	return nn
  1085  }
  1086  
  1087  const wrapGlobalMapInitSizeThreshold = 20
  1088  
  1089  // tryWrapGlobalInit returns a new outlined function to contain global
  1090  // initializer statement n, if possible and worthwhile. Otherwise, it
  1091  // returns nil.
  1092  //
  1093  // Currently, it outlines map assignment statements with large,
  1094  // side-effect-free RHS expressions.
  1095  func tryWrapGlobalInit(n ir.Node) *ir.Func {
  1096  	// Look for "X = ..." where X has map type.
  1097  	// FIXME: might also be worth trying to look for cases where
  1098  	// the LHS is of interface type but RHS is map type.
  1099  	if n.Op() != ir.OAS {
  1100  		return nil
  1101  	}
  1102  	as := n.(*ir.AssignStmt)
  1103  	if ir.IsBlank(as.X) || as.X.Op() != ir.ONAME {
  1104  		return nil
  1105  	}
  1106  	nm := as.X.(*ir.Name)
  1107  	if !nm.Type().IsMap() {
  1108  		return nil
  1109  	}
  1110  
  1111  	// Determine size of RHS.
  1112  	rsiz := 0
  1113  	ir.Any(as.Y, func(n ir.Node) bool {
  1114  		rsiz++
  1115  		return false
  1116  	})
  1117  	if base.Debug.WrapGlobalMapDbg > 0 {
  1118  		fmt.Fprintf(os.Stderr, "=-= mapassign %s %v rhs size %d\n",
  1119  			base.Ctxt.Pkgpath, n, rsiz)
  1120  	}
  1121  
  1122  	// Reject smaller candidates if not in stress mode.
  1123  	if rsiz < wrapGlobalMapInitSizeThreshold && base.Debug.WrapGlobalMapCtl != 2 {
  1124  		if base.Debug.WrapGlobalMapDbg > 1 {
  1125  			fmt.Fprintf(os.Stderr, "=-= skipping %v size too small at %d\n",
  1126  				nm, rsiz)
  1127  		}
  1128  		return nil
  1129  	}
  1130  
  1131  	// Reject right hand sides with side effects.
  1132  	if AnySideEffects(as.Y) {
  1133  		if base.Debug.WrapGlobalMapDbg > 0 {
  1134  			fmt.Fprintf(os.Stderr, "=-= rejected %v due to side effects\n", nm)
  1135  		}
  1136  		return nil
  1137  	}
  1138  
  1139  	if base.Debug.WrapGlobalMapDbg > 1 {
  1140  		fmt.Fprintf(os.Stderr, "=-= committed for: %+v\n", n)
  1141  	}
  1142  
  1143  	// Create a new function that will (eventually) have this form:
  1144  	//
  1145  	//	func map.init.%d() {
  1146  	//		globmapvar = <map initialization>
  1147  	//	}
  1148  	//
  1149  	// Note: cmd/link expects the function name to contain "map.init".
  1150  	minitsym := typecheck.LookupNum("map.init.", mapinitgen)
  1151  	mapinitgen++
  1152  
  1153  	fn := ir.NewFunc(n.Pos(), n.Pos(), minitsym, types.NewSignature(nil, nil, nil))
  1154  	fn.SetInlinabilityChecked(true) // suppress inlining (which would defeat the point)
  1155  	typecheck.DeclFunc(fn)
  1156  	if base.Debug.WrapGlobalMapDbg > 0 {
  1157  		fmt.Fprintf(os.Stderr, "=-= generated func is %v\n", fn)
  1158  	}
  1159  
  1160  	// NB: we're relying on this phase being run before inlining;
  1161  	// if for some reason we need to move it after inlining, we'll
  1162  	// need code here that relocates or duplicates inline temps.
  1163  
  1164  	// Insert assignment into function body; mark body finished.
  1165  	fn.Body = []ir.Node{as}
  1166  	typecheck.FinishFuncBody()
  1167  
  1168  	if base.Debug.WrapGlobalMapDbg > 1 {
  1169  		fmt.Fprintf(os.Stderr, "=-= mapvar is %v\n", nm)
  1170  		fmt.Fprintf(os.Stderr, "=-= newfunc is %+v\n", fn)
  1171  	}
  1172  
  1173  	recordFuncForVar(nm, fn)
  1174  
  1175  	return fn
  1176  }
  1177  
  1178  // mapinitgen is a counter used to uniquify compiler-generated
  1179  // map init functions.
  1180  var mapinitgen int
  1181  
  1182  // AddKeepRelocations adds a dummy "R_KEEP" relocation from each
  1183  // global map variable V to its associated outlined init function.
  1184  // These relocation ensure that if the map var itself is determined to
  1185  // be reachable at link time, we also mark the init function as
  1186  // reachable.
  1187  func AddKeepRelocations() {
  1188  	if varToMapInit == nil {
  1189  		return
  1190  	}
  1191  	for k, v := range varToMapInit {
  1192  		// Add R_KEEP relocation from map to init function.
  1193  		fs := v.Linksym()
  1194  		if fs == nil {
  1195  			base.Fatalf("bad: func %v has no linksym", v)
  1196  		}
  1197  		vs := k.Linksym()
  1198  		if vs == nil {
  1199  			base.Fatalf("bad: mapvar %v has no linksym", k)
  1200  		}
  1201  		r := obj.Addrel(vs)
  1202  		r.Sym = fs
  1203  		r.Type = objabi.R_KEEP
  1204  		if base.Debug.WrapGlobalMapDbg > 1 {
  1205  			fmt.Fprintf(os.Stderr, "=-= add R_KEEP relo from %s to %s\n",
  1206  				vs.Name, fs.Name)
  1207  		}
  1208  	}
  1209  	varToMapInit = nil
  1210  }
  1211  
  1212  // OutlineMapInits replaces global map initializers with outlined
  1213  // calls to separate "map init" functions (where possible and
  1214  // profitable), to facilitate better dead-code elimination by the
  1215  // linker.
  1216  func OutlineMapInits(fn *ir.Func) {
  1217  	if base.Debug.WrapGlobalMapCtl == 1 {
  1218  		return
  1219  	}
  1220  
  1221  	outlined := 0
  1222  	for i, stmt := range fn.Body {
  1223  		// Attempt to outline stmt. If successful, replace it with a call
  1224  		// to the returned wrapper function.
  1225  		if wrapperFn := tryWrapGlobalInit(stmt); wrapperFn != nil {
  1226  			ir.WithFunc(fn, func() {
  1227  				fn.Body[i] = typecheck.Call(stmt.Pos(), wrapperFn.Nname, nil, false)
  1228  			})
  1229  			outlined++
  1230  		}
  1231  	}
  1232  
  1233  	if base.Debug.WrapGlobalMapDbg > 1 {
  1234  		fmt.Fprintf(os.Stderr, "=-= outlined %v map initializations\n", outlined)
  1235  	}
  1236  }
  1237  

View as plain text