...

Source file src/cmd/compile/internal/types2/named.go

Documentation: cmd/compile/internal/types2

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package types2
     6  
     7  import (
     8  	"cmd/compile/internal/syntax"
     9  	"strings"
    10  	"sync"
    11  	"sync/atomic"
    12  )
    13  
    14  // Type-checking Named types is subtle, because they may be recursively
    15  // defined, and because their full details may be spread across multiple
    16  // declarations (via methods). For this reason they are type-checked lazily,
    17  // to avoid information being accessed before it is complete.
    18  //
    19  // Conceptually, it is helpful to think of named types as having two distinct
    20  // sets of information:
    21  //  - "LHS" information, defining their identity: Obj() and TypeArgs()
    22  //  - "RHS" information, defining their details: TypeParams(), Underlying(),
    23  //    and methods.
    24  //
    25  // In this taxonomy, LHS information is available immediately, but RHS
    26  // information is lazy. Specifically, a named type N may be constructed in any
    27  // of the following ways:
    28  //  1. type-checked from the source
    29  //  2. loaded eagerly from export data
    30  //  3. loaded lazily from export data (when using unified IR)
    31  //  4. instantiated from a generic type
    32  //
    33  // In cases 1, 3, and 4, it is possible that the underlying type or methods of
    34  // N may not be immediately available.
    35  //  - During type-checking, we allocate N before type-checking its underlying
    36  //    type or methods, so that we may resolve recursive references.
    37  //  - When loading from export data, we may load its methods and underlying
    38  //    type lazily using a provided load function.
    39  //  - After instantiating, we lazily expand the underlying type and methods
    40  //    (note that instances may be created while still in the process of
    41  //    type-checking the original type declaration).
    42  //
    43  // In cases 3 and 4 this lazy construction may also occur concurrently, due to
    44  // concurrent use of the type checker API (after type checking or importing has
    45  // finished). It is critical that we keep track of state, so that Named types
    46  // are constructed exactly once and so that we do not access their details too
    47  // soon.
    48  //
    49  // We achieve this by tracking state with an atomic state variable, and
    50  // guarding potentially concurrent calculations with a mutex. At any point in
    51  // time this state variable determines which data on N may be accessed. As
    52  // state monotonically progresses, any data available at state M may be
    53  // accessed without acquiring the mutex at state N, provided N >= M.
    54  //
    55  // GLOSSARY: Here are a few terms used in this file to describe Named types:
    56  //  - We say that a Named type is "instantiated" if it has been constructed by
    57  //    instantiating a generic named type with type arguments.
    58  //  - We say that a Named type is "declared" if it corresponds to a type
    59  //    declaration in the source. Instantiated named types correspond to a type
    60  //    instantiation in the source, not a declaration. But their Origin type is
    61  //    a declared type.
    62  //  - We say that a Named type is "resolved" if its RHS information has been
    63  //    loaded or fully type-checked. For Named types constructed from export
    64  //    data, this may involve invoking a loader function to extract information
    65  //    from export data. For instantiated named types this involves reading
    66  //    information from their origin.
    67  //  - We say that a Named type is "expanded" if it is an instantiated type and
    68  //    type parameters in its underlying type and methods have been substituted
    69  //    with the type arguments from the instantiation. A type may be partially
    70  //    expanded if some but not all of these details have been substituted.
    71  //    Similarly, we refer to these individual details (underlying type or
    72  //    method) as being "expanded".
    73  //  - When all information is known for a named type, we say it is "complete".
    74  //
    75  // Some invariants to keep in mind: each declared Named type has a single
    76  // corresponding object, and that object's type is the (possibly generic) Named
    77  // type. Declared Named types are identical if and only if their pointers are
    78  // identical. On the other hand, multiple instantiated Named types may be
    79  // identical even though their pointers are not identical. One has to use
    80  // Identical to compare them. For instantiated named types, their obj is a
    81  // synthetic placeholder that records their position of the corresponding
    82  // instantiation in the source (if they were constructed during type checking).
    83  //
    84  // To prevent infinite expansion of named instances that are created outside of
    85  // type-checking, instances share a Context with other instances created during
    86  // their expansion. Via the pidgeonhole principle, this guarantees that in the
    87  // presence of a cycle of named types, expansion will eventually find an
    88  // existing instance in the Context and short-circuit the expansion.
    89  //
    90  // Once an instance is complete, we can nil out this shared Context to unpin
    91  // memory, though this Context may still be held by other incomplete instances
    92  // in its "lineage".
    93  
    94  // A Named represents a named (defined) type.
    95  type Named struct {
    96  	check *Checker  // non-nil during type-checking; nil otherwise
    97  	obj   *TypeName // corresponding declared object for declared types; see above for instantiated types
    98  
    99  	// fromRHS holds the type (on RHS of declaration) this *Named type is derived
   100  	// from (for cycle reporting). Only used by validType, and therefore does not
   101  	// require synchronization.
   102  	fromRHS Type
   103  
   104  	// information for instantiated types; nil otherwise
   105  	inst *instance
   106  
   107  	mu         sync.Mutex     // guards all fields below
   108  	state_     uint32         // the current state of this type; must only be accessed atomically
   109  	underlying Type           // possibly a *Named during setup; never a *Named once set up completely
   110  	tparams    *TypeParamList // type parameters, or nil
   111  
   112  	// methods declared for this type (not the method set of this type)
   113  	// Signatures are type-checked lazily.
   114  	// For non-instantiated types, this is a fully populated list of methods. For
   115  	// instantiated types, methods are individually expanded when they are first
   116  	// accessed.
   117  	methods []*Func
   118  
   119  	// loader may be provided to lazily load type parameters, underlying type, and methods.
   120  	loader func(*Named) (tparams []*TypeParam, underlying Type, methods []*Func)
   121  }
   122  
   123  // instance holds information that is only necessary for instantiated named
   124  // types.
   125  type instance struct {
   126  	orig            *Named    // original, uninstantiated type
   127  	targs           *TypeList // type arguments
   128  	expandedMethods int       // number of expanded methods; expandedMethods <= len(orig.methods)
   129  	ctxt            *Context  // local Context; set to nil after full expansion
   130  }
   131  
   132  // namedState represents the possible states that a named type may assume.
   133  type namedState uint32
   134  
   135  const (
   136  	unresolved namedState = iota // tparams, underlying type and methods might be unavailable
   137  	resolved                     // resolve has run; methods might be incomplete (for instances)
   138  	complete                     // all data is known
   139  )
   140  
   141  // NewNamed returns a new named type for the given type name, underlying type, and associated methods.
   142  // If the given type name obj doesn't have a type yet, its type is set to the returned named type.
   143  // The underlying type must not be a *Named.
   144  func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   145  	if asNamed(underlying) != nil {
   146  		panic("underlying type must not be *Named")
   147  	}
   148  	return (*Checker)(nil).newNamed(obj, underlying, methods)
   149  }
   150  
   151  // resolve resolves the type parameters, methods, and underlying type of n.
   152  // This information may be loaded from a provided loader function, or computed
   153  // from an origin type (in the case of instances).
   154  //
   155  // After resolution, the type parameters, methods, and underlying type of n are
   156  // accessible; but if n is an instantiated type, its methods may still be
   157  // unexpanded.
   158  func (n *Named) resolve() *Named {
   159  	if n.state() >= resolved { // avoid locking below
   160  		return n
   161  	}
   162  
   163  	// TODO(rfindley): if n.check is non-nil we can avoid locking here, since
   164  	// type-checking is not concurrent. Evaluate if this is worth doing.
   165  	n.mu.Lock()
   166  	defer n.mu.Unlock()
   167  
   168  	if n.state() >= resolved {
   169  		return n
   170  	}
   171  
   172  	if n.inst != nil {
   173  		assert(n.underlying == nil) // n is an unresolved instance
   174  		assert(n.loader == nil)     // instances are created by instantiation, in which case n.loader is nil
   175  
   176  		orig := n.inst.orig
   177  		orig.resolve()
   178  		underlying := n.expandUnderlying()
   179  
   180  		n.tparams = orig.tparams
   181  		n.underlying = underlying
   182  		n.fromRHS = orig.fromRHS // for cycle detection
   183  
   184  		if len(orig.methods) == 0 {
   185  			n.setState(complete) // nothing further to do
   186  			n.inst.ctxt = nil
   187  		} else {
   188  			n.setState(resolved)
   189  		}
   190  		return n
   191  	}
   192  
   193  	// TODO(mdempsky): Since we're passing n to the loader anyway
   194  	// (necessary because types2 expects the receiver type for methods
   195  	// on defined interface types to be the Named rather than the
   196  	// underlying Interface), maybe it should just handle calling
   197  	// SetTypeParams, SetUnderlying, and AddMethod instead?  Those
   198  	// methods would need to support reentrant calls though. It would
   199  	// also make the API more future-proof towards further extensions.
   200  	if n.loader != nil {
   201  		assert(n.underlying == nil)
   202  		assert(n.TypeArgs().Len() == 0) // instances are created by instantiation, in which case n.loader is nil
   203  
   204  		tparams, underlying, methods := n.loader(n)
   205  
   206  		n.tparams = bindTParams(tparams)
   207  		n.underlying = underlying
   208  		n.fromRHS = underlying // for cycle detection
   209  		n.methods = methods
   210  		n.loader = nil
   211  	}
   212  
   213  	n.setState(complete)
   214  	return n
   215  }
   216  
   217  // state atomically accesses the current state of the receiver.
   218  func (n *Named) state() namedState {
   219  	return namedState(atomic.LoadUint32(&n.state_))
   220  }
   221  
   222  // setState atomically stores the given state for n.
   223  // Must only be called while holding n.mu.
   224  func (n *Named) setState(state namedState) {
   225  	atomic.StoreUint32(&n.state_, uint32(state))
   226  }
   227  
   228  // newNamed is like NewNamed but with a *Checker receiver.
   229  func (check *Checker) newNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   230  	typ := &Named{check: check, obj: obj, fromRHS: underlying, underlying: underlying, methods: methods}
   231  	if obj.typ == nil {
   232  		obj.typ = typ
   233  	}
   234  	// Ensure that typ is always sanity-checked.
   235  	if check != nil {
   236  		check.needsCleanup(typ)
   237  	}
   238  	return typ
   239  }
   240  
   241  // newNamedInstance creates a new named instance for the given origin and type
   242  // arguments, recording pos as the position of its synthetic object (for error
   243  // reporting).
   244  //
   245  // If set, expanding is the named type instance currently being expanded, that
   246  // led to the creation of this instance.
   247  func (check *Checker) newNamedInstance(pos syntax.Pos, orig *Named, targs []Type, expanding *Named) *Named {
   248  	assert(len(targs) > 0)
   249  
   250  	obj := NewTypeName(pos, orig.obj.pkg, orig.obj.name, nil)
   251  	inst := &instance{orig: orig, targs: newTypeList(targs)}
   252  
   253  	// Only pass the expanding context to the new instance if their packages
   254  	// match. Since type reference cycles are only possible within a single
   255  	// package, this is sufficient for the purposes of short-circuiting cycles.
   256  	// Avoiding passing the context in other cases prevents unnecessary coupling
   257  	// of types across packages.
   258  	if expanding != nil && expanding.Obj().pkg == obj.pkg {
   259  		inst.ctxt = expanding.inst.ctxt
   260  	}
   261  	typ := &Named{check: check, obj: obj, inst: inst}
   262  	obj.typ = typ
   263  	// Ensure that typ is always sanity-checked.
   264  	if check != nil {
   265  		check.needsCleanup(typ)
   266  	}
   267  	return typ
   268  }
   269  
   270  func (t *Named) cleanup() {
   271  	assert(t.inst == nil || t.inst.orig.inst == nil)
   272  	// Ensure that every defined type created in the course of type-checking has
   273  	// either non-*Named underlying type, or is unexpanded.
   274  	//
   275  	// This guarantees that we don't leak any types whose underlying type is
   276  	// *Named, because any unexpanded instances will lazily compute their
   277  	// underlying type by substituting in the underlying type of their origin.
   278  	// The origin must have either been imported or type-checked and expanded
   279  	// here, and in either case its underlying type will be fully expanded.
   280  	switch t.underlying.(type) {
   281  	case nil:
   282  		if t.TypeArgs().Len() == 0 {
   283  			panic("nil underlying")
   284  		}
   285  	case *Named, *Alias:
   286  		t.under() // t.under may add entries to check.cleaners
   287  	}
   288  	t.check = nil
   289  }
   290  
   291  // Obj returns the type name for the declaration defining the named type t. For
   292  // instantiated types, this is same as the type name of the origin type.
   293  func (t *Named) Obj() *TypeName {
   294  	if t.inst == nil {
   295  		return t.obj
   296  	}
   297  	return t.inst.orig.obj
   298  }
   299  
   300  // Origin returns the generic type from which the named type t is
   301  // instantiated. If t is not an instantiated type, the result is t.
   302  func (t *Named) Origin() *Named {
   303  	if t.inst == nil {
   304  		return t
   305  	}
   306  	return t.inst.orig
   307  }
   308  
   309  // TypeParams returns the type parameters of the named type t, or nil.
   310  // The result is non-nil for an (originally) generic type even if it is instantiated.
   311  func (t *Named) TypeParams() *TypeParamList { return t.resolve().tparams }
   312  
   313  // SetTypeParams sets the type parameters of the named type t.
   314  // t must not have type arguments.
   315  func (t *Named) SetTypeParams(tparams []*TypeParam) {
   316  	assert(t.inst == nil)
   317  	t.resolve().tparams = bindTParams(tparams)
   318  }
   319  
   320  // TypeArgs returns the type arguments used to instantiate the named type t.
   321  func (t *Named) TypeArgs() *TypeList {
   322  	if t.inst == nil {
   323  		return nil
   324  	}
   325  	return t.inst.targs
   326  }
   327  
   328  // NumMethods returns the number of explicit methods defined for t.
   329  func (t *Named) NumMethods() int {
   330  	return len(t.Origin().resolve().methods)
   331  }
   332  
   333  // Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
   334  //
   335  // For an ordinary or instantiated type t, the receiver base type of this
   336  // method is the named type t. For an uninstantiated generic type t, each
   337  // method receiver is instantiated with its receiver type parameters.
   338  //
   339  // Methods are numbered deterministically: given the same list of source files
   340  // presented to the type checker, or the same sequence of NewMethod and AddMethod
   341  // calls, the mapping from method index to corresponding method remains the same.
   342  // But the specific ordering is not specified and must not be relied on as it may
   343  // change in the future.
   344  func (t *Named) Method(i int) *Func {
   345  	t.resolve()
   346  
   347  	if t.state() >= complete {
   348  		return t.methods[i]
   349  	}
   350  
   351  	assert(t.inst != nil) // only instances should have incomplete methods
   352  	orig := t.inst.orig
   353  
   354  	t.mu.Lock()
   355  	defer t.mu.Unlock()
   356  
   357  	if len(t.methods) != len(orig.methods) {
   358  		assert(len(t.methods) == 0)
   359  		t.methods = make([]*Func, len(orig.methods))
   360  	}
   361  
   362  	if t.methods[i] == nil {
   363  		assert(t.inst.ctxt != nil) // we should still have a context remaining from the resolution phase
   364  		t.methods[i] = t.expandMethod(i)
   365  		t.inst.expandedMethods++
   366  
   367  		// Check if we've created all methods at this point. If we have, mark the
   368  		// type as fully expanded.
   369  		if t.inst.expandedMethods == len(orig.methods) {
   370  			t.setState(complete)
   371  			t.inst.ctxt = nil // no need for a context anymore
   372  		}
   373  	}
   374  
   375  	return t.methods[i]
   376  }
   377  
   378  // expandMethod substitutes type arguments in the i'th method for an
   379  // instantiated receiver.
   380  func (t *Named) expandMethod(i int) *Func {
   381  	// t.orig.methods is not lazy. origm is the method instantiated with its
   382  	// receiver type parameters (the "origin" method).
   383  	origm := t.inst.orig.Method(i)
   384  	assert(origm != nil)
   385  
   386  	check := t.check
   387  	// Ensure that the original method is type-checked.
   388  	if check != nil {
   389  		check.objDecl(origm, nil)
   390  	}
   391  
   392  	origSig := origm.typ.(*Signature)
   393  	rbase, _ := deref(origSig.Recv().Type())
   394  
   395  	// If rbase is t, then origm is already the instantiated method we're looking
   396  	// for. In this case, we return origm to preserve the invariant that
   397  	// traversing Method->Receiver Type->Method should get back to the same
   398  	// method.
   399  	//
   400  	// This occurs if t is instantiated with the receiver type parameters, as in
   401  	// the use of m in func (r T[_]) m() { r.m() }.
   402  	if rbase == t {
   403  		return origm
   404  	}
   405  
   406  	sig := origSig
   407  	// We can only substitute if we have a correspondence between type arguments
   408  	// and type parameters. This check is necessary in the presence of invalid
   409  	// code.
   410  	if origSig.RecvTypeParams().Len() == t.inst.targs.Len() {
   411  		smap := makeSubstMap(origSig.RecvTypeParams().list(), t.inst.targs.list())
   412  		var ctxt *Context
   413  		if check != nil {
   414  			ctxt = check.context()
   415  		}
   416  		sig = check.subst(origm.pos, origSig, smap, t, ctxt).(*Signature)
   417  	}
   418  
   419  	if sig == origSig {
   420  		// No substitution occurred, but we still need to create a new signature to
   421  		// hold the instantiated receiver.
   422  		copy := *origSig
   423  		sig = &copy
   424  	}
   425  
   426  	var rtyp Type
   427  	if origm.hasPtrRecv() {
   428  		rtyp = NewPointer(t)
   429  	} else {
   430  		rtyp = t
   431  	}
   432  
   433  	sig.recv = substVar(origSig.recv, rtyp)
   434  	return substFunc(origm, sig)
   435  }
   436  
   437  // SetUnderlying sets the underlying type and marks t as complete.
   438  // t must not have type arguments.
   439  func (t *Named) SetUnderlying(underlying Type) {
   440  	assert(t.inst == nil)
   441  	if underlying == nil {
   442  		panic("underlying type must not be nil")
   443  	}
   444  	if asNamed(underlying) != nil {
   445  		panic("underlying type must not be *Named")
   446  	}
   447  	t.resolve().underlying = underlying
   448  	if t.fromRHS == nil {
   449  		t.fromRHS = underlying // for cycle detection
   450  	}
   451  }
   452  
   453  // AddMethod adds method m unless it is already in the method list.
   454  // The method must be in the same package as t, and t must not have
   455  // type arguments.
   456  func (t *Named) AddMethod(m *Func) {
   457  	assert(samePkg(t.obj.pkg, m.pkg))
   458  	assert(t.inst == nil)
   459  	t.resolve()
   460  	if t.methodIndex(m.name, false) < 0 {
   461  		t.methods = append(t.methods, m)
   462  	}
   463  }
   464  
   465  // methodIndex returns the index of the method with the given name.
   466  // If foldCase is set, capitalization in the name is ignored.
   467  // The result is negative if no such method exists.
   468  func (t *Named) methodIndex(name string, foldCase bool) int {
   469  	if name == "_" {
   470  		return -1
   471  	}
   472  	if foldCase {
   473  		for i, m := range t.methods {
   474  			if strings.EqualFold(m.name, name) {
   475  				return i
   476  			}
   477  		}
   478  	} else {
   479  		for i, m := range t.methods {
   480  			if m.name == name {
   481  				return i
   482  			}
   483  		}
   484  	}
   485  	return -1
   486  }
   487  
   488  // Underlying returns the [underlying type] of the named type t, resolving all
   489  // forwarding declarations. Underlying types are never Named, TypeParam, or
   490  // Alias types.
   491  //
   492  // [underlying type]: https://go.dev/ref/spec#Underlying_types.
   493  func (t *Named) Underlying() Type {
   494  	// TODO(gri) Investigate if Unalias can be moved to where underlying is set.
   495  	return Unalias(t.resolve().underlying)
   496  }
   497  
   498  func (t *Named) String() string { return TypeString(t, nil) }
   499  
   500  // ----------------------------------------------------------------------------
   501  // Implementation
   502  //
   503  // TODO(rfindley): reorganize the loading and expansion methods under this
   504  // heading.
   505  
   506  // under returns the expanded underlying type of n0; possibly by following
   507  // forward chains of named types. If an underlying type is found, resolve
   508  // the chain by setting the underlying type for each defined type in the
   509  // chain before returning it. If no underlying type is found or a cycle
   510  // is detected, the result is Typ[Invalid]. If a cycle is detected and
   511  // n0.check != nil, the cycle is reported.
   512  //
   513  // This is necessary because the underlying type of named may be itself a
   514  // named type that is incomplete:
   515  //
   516  //	type (
   517  //		A B
   518  //		B *C
   519  //		C A
   520  //	)
   521  //
   522  // The type of C is the (named) type of A which is incomplete,
   523  // and which has as its underlying type the named type B.
   524  func (n0 *Named) under() Type {
   525  	u := n0.Underlying()
   526  
   527  	// If the underlying type of a defined type is not a defined
   528  	// (incl. instance) type, then that is the desired underlying
   529  	// type.
   530  	var n1 *Named
   531  	switch u1 := u.(type) {
   532  	case nil:
   533  		// After expansion via Underlying(), we should never encounter a nil
   534  		// underlying.
   535  		panic("nil underlying")
   536  	default:
   537  		// common case
   538  		return u
   539  	case *Named:
   540  		// handled below
   541  		n1 = u1
   542  	}
   543  
   544  	if n0.check == nil {
   545  		panic("Named.check == nil but type is incomplete")
   546  	}
   547  
   548  	// Invariant: after this point n0 as well as any named types in its
   549  	// underlying chain should be set up when this function exits.
   550  	check := n0.check
   551  	n := n0
   552  
   553  	seen := make(map[*Named]int) // types that need their underlying type resolved
   554  	var path []Object            // objects encountered, for cycle reporting
   555  
   556  loop:
   557  	for {
   558  		seen[n] = len(seen)
   559  		path = append(path, n.obj)
   560  		n = n1
   561  		if i, ok := seen[n]; ok {
   562  			// cycle
   563  			check.cycleError(path[i:], firstInSrc(path[i:]))
   564  			u = Typ[Invalid]
   565  			break
   566  		}
   567  		u = n.Underlying()
   568  		switch u1 := u.(type) {
   569  		case nil:
   570  			u = Typ[Invalid]
   571  			break loop
   572  		default:
   573  			break loop
   574  		case *Named:
   575  			// Continue collecting *Named types in the chain.
   576  			n1 = u1
   577  		}
   578  	}
   579  
   580  	for n := range seen {
   581  		// We should never have to update the underlying type of an imported type;
   582  		// those underlying types should have been resolved during the import.
   583  		// Also, doing so would lead to a race condition (was go.dev/issue/31749).
   584  		// Do this check always, not just in debug mode (it's cheap).
   585  		if n.obj.pkg != check.pkg {
   586  			panic("imported type with unresolved underlying type")
   587  		}
   588  		n.underlying = u
   589  	}
   590  
   591  	return u
   592  }
   593  
   594  func (n *Named) lookupMethod(pkg *Package, name string, foldCase bool) (int, *Func) {
   595  	n.resolve()
   596  	if samePkg(n.obj.pkg, pkg) || isExported(name) || foldCase {
   597  		// If n is an instance, we may not have yet instantiated all of its methods.
   598  		// Look up the method index in orig, and only instantiate method at the
   599  		// matching index (if any).
   600  		if i := n.Origin().methodIndex(name, foldCase); i >= 0 {
   601  			// For instances, m.Method(i) will be different from the orig method.
   602  			return i, n.Method(i)
   603  		}
   604  	}
   605  	return -1, nil
   606  }
   607  
   608  // context returns the type-checker context.
   609  func (check *Checker) context() *Context {
   610  	if check.ctxt == nil {
   611  		check.ctxt = NewContext()
   612  	}
   613  	return check.ctxt
   614  }
   615  
   616  // expandUnderlying substitutes type arguments in the underlying type n.orig,
   617  // returning the result. Returns Typ[Invalid] if there was an error.
   618  func (n *Named) expandUnderlying() Type {
   619  	check := n.check
   620  	if check != nil && check.conf.Trace {
   621  		check.trace(n.obj.pos, "-- Named.expandUnderlying %s", n)
   622  		check.indent++
   623  		defer func() {
   624  			check.indent--
   625  			check.trace(n.obj.pos, "=> %s (tparams = %s, under = %s)", n, n.tparams.list(), n.underlying)
   626  		}()
   627  	}
   628  
   629  	assert(n.inst.orig.underlying != nil)
   630  	if n.inst.ctxt == nil {
   631  		n.inst.ctxt = NewContext()
   632  	}
   633  
   634  	orig := n.inst.orig
   635  	targs := n.inst.targs
   636  
   637  	if asNamed(orig.underlying) != nil {
   638  		// We should only get a Named underlying type here during type checking
   639  		// (for example, in recursive type declarations).
   640  		assert(check != nil)
   641  	}
   642  
   643  	if orig.tparams.Len() != targs.Len() {
   644  		// Mismatching arg and tparam length may be checked elsewhere.
   645  		return Typ[Invalid]
   646  	}
   647  
   648  	// Ensure that an instance is recorded before substituting, so that we
   649  	// resolve n for any recursive references.
   650  	h := n.inst.ctxt.instanceHash(orig, targs.list())
   651  	n2 := n.inst.ctxt.update(h, orig, n.TypeArgs().list(), n)
   652  	assert(n == n2)
   653  
   654  	smap := makeSubstMap(orig.tparams.list(), targs.list())
   655  	var ctxt *Context
   656  	if check != nil {
   657  		ctxt = check.context()
   658  	}
   659  	underlying := n.check.subst(n.obj.pos, orig.underlying, smap, n, ctxt)
   660  	// If the underlying type of n is an interface, we need to set the receiver of
   661  	// its methods accurately -- we set the receiver of interface methods on
   662  	// the RHS of a type declaration to the defined type.
   663  	if iface, _ := underlying.(*Interface); iface != nil {
   664  		if methods, copied := replaceRecvType(iface.methods, orig, n); copied {
   665  			// If the underlying type doesn't actually use type parameters, it's
   666  			// possible that it wasn't substituted. In this case we need to create
   667  			// a new *Interface before modifying receivers.
   668  			if iface == orig.underlying {
   669  				old := iface
   670  				iface = check.newInterface()
   671  				iface.embeddeds = old.embeddeds
   672  				assert(old.complete) // otherwise we are copying incomplete data
   673  				iface.complete = old.complete
   674  				iface.implicit = old.implicit // should be false but be conservative
   675  				underlying = iface
   676  			}
   677  			iface.methods = methods
   678  			iface.tset = nil // recompute type set with new methods
   679  
   680  			// If check != nil, check.newInterface will have saved the interface for later completion.
   681  			if check == nil { // golang/go#61561: all newly created interfaces must be fully evaluated
   682  				iface.typeSet()
   683  			}
   684  		}
   685  	}
   686  
   687  	return underlying
   688  }
   689  
   690  // safeUnderlying returns the underlying type of typ without expanding
   691  // instances, to avoid infinite recursion.
   692  //
   693  // TODO(rfindley): eliminate this function or give it a better name.
   694  func safeUnderlying(typ Type) Type {
   695  	if t := asNamed(typ); t != nil {
   696  		return t.underlying
   697  	}
   698  	return typ.Underlying()
   699  }
   700  

View as plain text