...

Source file src/cmd/go/internal/work/buildid.go

Documentation: cmd/go/internal/work

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package work
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"os"
    11  	"os/exec"
    12  	"strings"
    13  	"sync"
    14  
    15  	"cmd/go/internal/base"
    16  	"cmd/go/internal/cache"
    17  	"cmd/go/internal/cfg"
    18  	"cmd/go/internal/fsys"
    19  	"cmd/go/internal/str"
    20  	"cmd/internal/buildid"
    21  	"cmd/internal/quoted"
    22  	"cmd/internal/telemetry/counter"
    23  )
    24  
    25  // Build IDs
    26  //
    27  // Go packages and binaries are stamped with build IDs that record both
    28  // the action ID, which is a hash of the inputs to the action that produced
    29  // the packages or binary, and the content ID, which is a hash of the action
    30  // output, namely the archive or binary itself. The hash is the same one
    31  // used by the build artifact cache (see cmd/go/internal/cache), but
    32  // truncated when stored in packages and binaries, as the full length is not
    33  // needed and is a bit unwieldy. The precise form is
    34  //
    35  //	actionID/[.../]contentID
    36  //
    37  // where the actionID and contentID are prepared by buildid.HashToString below.
    38  // and are found by looking for the first or last slash.
    39  // Usually the buildID is simply actionID/contentID, but see below for an
    40  // exception.
    41  //
    42  // The build ID serves two primary purposes.
    43  //
    44  // 1. The action ID half allows installed packages and binaries to serve as
    45  // one-element cache entries. If we intend to build math.a with a given
    46  // set of inputs summarized in the action ID, and the installed math.a already
    47  // has that action ID, we can reuse the installed math.a instead of rebuilding it.
    48  //
    49  // 2. The content ID half allows the easy preparation of action IDs for steps
    50  // that consume a particular package or binary. The content hash of every
    51  // input file for a given action must be included in the action ID hash.
    52  // Storing the content ID in the build ID lets us read it from the file with
    53  // minimal I/O, instead of reading and hashing the entire file.
    54  // This is especially effective since packages and binaries are typically
    55  // the largest inputs to an action.
    56  //
    57  // Separating action ID from content ID is important for reproducible builds.
    58  // The compiler is compiled with itself. If an output were represented by its
    59  // own action ID (instead of content ID) when computing the action ID of
    60  // the next step in the build process, then the compiler could never have its
    61  // own input action ID as its output action ID (short of a miraculous hash collision).
    62  // Instead we use the content IDs to compute the next action ID, and because
    63  // the content IDs converge, so too do the action IDs and therefore the
    64  // build IDs and the overall compiler binary. See cmd/dist's cmdbootstrap
    65  // for the actual convergence sequence.
    66  //
    67  // The “one-element cache” purpose is a bit more complex for installed
    68  // binaries. For a binary, like cmd/gofmt, there are two steps: compile
    69  // cmd/gofmt/*.go into main.a, and then link main.a into the gofmt binary.
    70  // We do not install gofmt's main.a, only the gofmt binary. Being able to
    71  // decide that the gofmt binary is up-to-date means computing the action ID
    72  // for the final link of the gofmt binary and comparing it against the
    73  // already-installed gofmt binary. But computing the action ID for the link
    74  // means knowing the content ID of main.a, which we did not keep.
    75  // To sidestep this problem, each binary actually stores an expanded build ID:
    76  //
    77  //	actionID(binary)/actionID(main.a)/contentID(main.a)/contentID(binary)
    78  //
    79  // (Note that this can be viewed equivalently as:
    80  //
    81  //	actionID(binary)/buildID(main.a)/contentID(binary)
    82  //
    83  // Storing the buildID(main.a) in the middle lets the computations that care
    84  // about the prefix or suffix halves ignore the middle and preserves the
    85  // original build ID as a contiguous string.)
    86  //
    87  // During the build, when it's time to build main.a, the gofmt binary has the
    88  // information needed to decide whether the eventual link would produce
    89  // the same binary: if the action ID for main.a's inputs matches and then
    90  // the action ID for the link step matches when assuming the given main.a
    91  // content ID, then the binary as a whole is up-to-date and need not be rebuilt.
    92  //
    93  // This is all a bit complex and may be simplified once we can rely on the
    94  // main cache, but at least at the start we will be using the content-based
    95  // staleness determination without a cache beyond the usual installed
    96  // package and binary locations.
    97  
    98  const buildIDSeparator = "/"
    99  
   100  // actionID returns the action ID half of a build ID.
   101  func actionID(buildID string) string {
   102  	i := strings.Index(buildID, buildIDSeparator)
   103  	if i < 0 {
   104  		return buildID
   105  	}
   106  	return buildID[:i]
   107  }
   108  
   109  // contentID returns the content ID half of a build ID.
   110  func contentID(buildID string) string {
   111  	return buildID[strings.LastIndex(buildID, buildIDSeparator)+1:]
   112  }
   113  
   114  // toolID returns the unique ID to use for the current copy of the
   115  // named tool (asm, compile, cover, link).
   116  //
   117  // It is important that if the tool changes (for example a compiler bug is fixed
   118  // and the compiler reinstalled), toolID returns a different string, so that old
   119  // package archives look stale and are rebuilt (with the fixed compiler).
   120  // This suggests using a content hash of the tool binary, as stored in the build ID.
   121  //
   122  // Unfortunately, we can't just open the tool binary, because the tool might be
   123  // invoked via a wrapper program specified by -toolexec and we don't know
   124  // what the wrapper program does. In particular, we want "-toolexec toolstash"
   125  // to continue working: it does no good if "-toolexec toolstash" is executing a
   126  // stashed copy of the compiler but the go command is acting as if it will run
   127  // the standard copy of the compiler. The solution is to ask the tool binary to tell
   128  // us its own build ID using the "-V=full" flag now supported by all tools.
   129  // Then we know we're getting the build ID of the compiler that will actually run
   130  // during the build. (How does the compiler binary know its own content hash?
   131  // We store it there using updateBuildID after the standard link step.)
   132  //
   133  // A final twist is that we'd prefer to have reproducible builds for release toolchains.
   134  // It should be possible to cross-compile for Windows from either Linux or Mac
   135  // or Windows itself and produce the same binaries, bit for bit. If the tool ID,
   136  // which influences the action ID half of the build ID, is based on the content ID,
   137  // then the Linux compiler binary and Mac compiler binary will have different tool IDs
   138  // and therefore produce executables with different action IDs.
   139  // To avoid this problem, for releases we use the release version string instead
   140  // of the compiler binary's content hash. This assumes that all compilers built
   141  // on all different systems are semantically equivalent, which is of course only true
   142  // modulo bugs. (Producing the exact same executables also requires that the different
   143  // build setups agree on details like $GOROOT and file name paths, but at least the
   144  // tool IDs do not make it impossible.)
   145  func (b *Builder) toolID(name string) string {
   146  	b.id.Lock()
   147  	id := b.toolIDCache[name]
   148  	b.id.Unlock()
   149  
   150  	if id != "" {
   151  		return id
   152  	}
   153  
   154  	path := base.Tool(name)
   155  	desc := "go tool " + name
   156  
   157  	// Special case: undocumented -vettool overrides usual vet,
   158  	// for testing vet or supplying an alternative analysis tool.
   159  	if name == "vet" && VetTool != "" {
   160  		path = VetTool
   161  		desc = VetTool
   162  	}
   163  
   164  	cmdline := str.StringList(cfg.BuildToolexec, path, "-V=full")
   165  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   166  	var stdout, stderr strings.Builder
   167  	cmd.Stdout = &stdout
   168  	cmd.Stderr = &stderr
   169  	if err := cmd.Run(); err != nil {
   170  		if stderr.Len() > 0 {
   171  			os.Stderr.WriteString(stderr.String())
   172  		}
   173  		base.Fatalf("go: error obtaining buildID for %s: %v", desc, err)
   174  	}
   175  
   176  	line := stdout.String()
   177  	f := strings.Fields(line)
   178  	if len(f) < 3 || f[0] != name && path != VetTool || f[1] != "version" || f[2] == "devel" && !strings.HasPrefix(f[len(f)-1], "buildID=") {
   179  		base.Fatalf("go: parsing buildID from %s -V=full: unexpected output:\n\t%s", desc, line)
   180  	}
   181  	if f[2] == "devel" {
   182  		// On the development branch, use the content ID part of the build ID.
   183  		id = contentID(f[len(f)-1])
   184  	} else {
   185  		// For a release, the output is like: "compile version go1.9.1 X:framepointer".
   186  		// Use the whole line.
   187  		id = strings.TrimSpace(line)
   188  	}
   189  
   190  	b.id.Lock()
   191  	b.toolIDCache[name] = id
   192  	b.id.Unlock()
   193  
   194  	return id
   195  }
   196  
   197  // gccToolID returns the unique ID to use for a tool that is invoked
   198  // by the GCC driver. This is used particularly for gccgo, but this can also
   199  // be used for gcc, g++, gfortran, etc.; those tools all use the GCC
   200  // driver under different names. The approach used here should also
   201  // work for sufficiently new versions of clang. Unlike toolID, the
   202  // name argument is the program to run. The language argument is the
   203  // type of input file as passed to the GCC driver's -x option.
   204  //
   205  // For these tools we have no -V=full option to dump the build ID,
   206  // but we can run the tool with -v -### to reliably get the compiler proper
   207  // and hash that. That will work in the presence of -toolexec.
   208  //
   209  // In order to get reproducible builds for released compilers, we
   210  // detect a released compiler by the absence of "experimental" in the
   211  // --version output, and in that case we just use the version string.
   212  //
   213  // gccToolID also returns the underlying executable for the compiler.
   214  // The caller assumes that stat of the exe can be used, combined with the id,
   215  // to detect changes in the underlying compiler. The returned exe can be empty,
   216  // which means to rely only on the id.
   217  func (b *Builder) gccToolID(name, language string) (id, exe string, err error) {
   218  	key := name + "." + language
   219  	b.id.Lock()
   220  	id = b.toolIDCache[key]
   221  	exe = b.toolIDCache[key+".exe"]
   222  	b.id.Unlock()
   223  
   224  	if id != "" {
   225  		return id, exe, nil
   226  	}
   227  
   228  	// Invoke the driver with -### to see the subcommands and the
   229  	// version strings. Use -x to set the language. Pretend to
   230  	// compile an empty file on standard input.
   231  	cmdline := str.StringList(cfg.BuildToolexec, name, "-###", "-x", language, "-c", "-")
   232  	cmd := exec.Command(cmdline[0], cmdline[1:]...)
   233  	// Force untranslated output so that we see the string "version".
   234  	cmd.Env = append(os.Environ(), "LC_ALL=C")
   235  	out, err := cmd.CombinedOutput()
   236  	if err != nil {
   237  		return "", "", fmt.Errorf("%s: %v; output: %q", name, err, out)
   238  	}
   239  
   240  	version := ""
   241  	lines := strings.Split(string(out), "\n")
   242  	for _, line := range lines {
   243  		fields := strings.Fields(line)
   244  		for i, field := range fields {
   245  			if strings.HasSuffix(field, ":") {
   246  				// Avoid parsing fields of lines like "Configured with: …", which may
   247  				// contain arbitrary substrings.
   248  				break
   249  			}
   250  			if field == "version" && i < len(fields)-1 {
   251  				// Check that the next field is plausibly a version number.
   252  				// We require only that it begins with an ASCII digit,
   253  				// since we don't know what version numbering schemes a given
   254  				// C compiler may use. (Clang and GCC mostly seem to follow the scheme X.Y.Z,
   255  				// but in https://go.dev/issue/64619 we saw "8.3 [DragonFly]", and who knows
   256  				// what other C compilers like "zig cc" might report?)
   257  				next := fields[i+1]
   258  				if len(next) > 0 && next[0] >= '0' && next[0] <= '9' {
   259  					version = line
   260  					break
   261  				}
   262  			}
   263  		}
   264  		if version != "" {
   265  			break
   266  		}
   267  	}
   268  	if version == "" {
   269  		return "", "", fmt.Errorf("%s: can not find version number in %q", name, out)
   270  	}
   271  
   272  	if !strings.Contains(version, "experimental") {
   273  		// This is a release. Use this line as the tool ID.
   274  		id = version
   275  	} else {
   276  		// This is a development version. The first line with
   277  		// a leading space is the compiler proper.
   278  		compiler := ""
   279  		for _, line := range lines {
   280  			if strings.HasPrefix(line, " ") && !strings.HasPrefix(line, " (in-process)") {
   281  				compiler = line
   282  				break
   283  			}
   284  		}
   285  		if compiler == "" {
   286  			return "", "", fmt.Errorf("%s: can not find compilation command in %q", name, out)
   287  		}
   288  
   289  		fields, _ := quoted.Split(compiler)
   290  		if len(fields) == 0 {
   291  			return "", "", fmt.Errorf("%s: compilation command confusion %q", name, out)
   292  		}
   293  		exe = fields[0]
   294  		if !strings.ContainsAny(exe, `/\`) {
   295  			if lp, err := cfg.LookPath(exe); err == nil {
   296  				exe = lp
   297  			}
   298  		}
   299  		id, err = buildid.ReadFile(exe)
   300  		if err != nil {
   301  			return "", "", err
   302  		}
   303  
   304  		// If we can't find a build ID, use a hash.
   305  		if id == "" {
   306  			id = b.fileHash(exe)
   307  		}
   308  	}
   309  
   310  	b.id.Lock()
   311  	b.toolIDCache[key] = id
   312  	b.toolIDCache[key+".exe"] = exe
   313  	b.id.Unlock()
   314  
   315  	return id, exe, nil
   316  }
   317  
   318  // Check if assembler used by gccgo is GNU as.
   319  func assemblerIsGas() bool {
   320  	cmd := exec.Command(BuildToolchain.compiler(), "-print-prog-name=as")
   321  	assembler, err := cmd.Output()
   322  	if err == nil {
   323  		cmd := exec.Command(strings.TrimSpace(string(assembler)), "--version")
   324  		out, err := cmd.Output()
   325  		return err == nil && strings.Contains(string(out), "GNU")
   326  	} else {
   327  		return false
   328  	}
   329  }
   330  
   331  // gccgoBuildIDFile creates an assembler file that records the
   332  // action's build ID in an SHF_EXCLUDE section for ELF files or
   333  // in a CSECT in XCOFF files.
   334  func (b *Builder) gccgoBuildIDFile(a *Action) (string, error) {
   335  	sfile := a.Objdir + "_buildid.s"
   336  
   337  	var buf bytes.Buffer
   338  	if cfg.Goos == "aix" {
   339  		fmt.Fprintf(&buf, "\t.csect .go.buildid[XO]\n")
   340  	} else if (cfg.Goos != "solaris" && cfg.Goos != "illumos") || assemblerIsGas() {
   341  		fmt.Fprintf(&buf, "\t"+`.section .go.buildid,"e"`+"\n")
   342  	} else if cfg.Goarch == "sparc" || cfg.Goarch == "sparc64" {
   343  		fmt.Fprintf(&buf, "\t"+`.section ".go.buildid",#exclude`+"\n")
   344  	} else { // cfg.Goarch == "386" || cfg.Goarch == "amd64"
   345  		fmt.Fprintf(&buf, "\t"+`.section .go.buildid,#exclude`+"\n")
   346  	}
   347  	fmt.Fprintf(&buf, "\t.byte ")
   348  	for i := 0; i < len(a.buildID); i++ {
   349  		if i > 0 {
   350  			if i%8 == 0 {
   351  				fmt.Fprintf(&buf, "\n\t.byte ")
   352  			} else {
   353  				fmt.Fprintf(&buf, ",")
   354  			}
   355  		}
   356  		fmt.Fprintf(&buf, "%#02x", a.buildID[i])
   357  	}
   358  	fmt.Fprintf(&buf, "\n")
   359  	if cfg.Goos != "solaris" && cfg.Goos != "illumos" && cfg.Goos != "aix" {
   360  		secType := "@progbits"
   361  		if cfg.Goarch == "arm" {
   362  			secType = "%progbits"
   363  		}
   364  		fmt.Fprintf(&buf, "\t"+`.section .note.GNU-stack,"",%s`+"\n", secType)
   365  		fmt.Fprintf(&buf, "\t"+`.section .note.GNU-split-stack,"",%s`+"\n", secType)
   366  	}
   367  
   368  	if err := b.Shell(a).writeFile(sfile, buf.Bytes()); err != nil {
   369  		return "", err
   370  	}
   371  
   372  	return sfile, nil
   373  }
   374  
   375  // buildID returns the build ID found in the given file.
   376  // If no build ID is found, buildID returns the content hash of the file.
   377  func (b *Builder) buildID(file string) string {
   378  	b.id.Lock()
   379  	id := b.buildIDCache[file]
   380  	b.id.Unlock()
   381  
   382  	if id != "" {
   383  		return id
   384  	}
   385  
   386  	id, err := buildid.ReadFile(file)
   387  	if err != nil {
   388  		id = b.fileHash(file)
   389  	}
   390  
   391  	b.id.Lock()
   392  	b.buildIDCache[file] = id
   393  	b.id.Unlock()
   394  
   395  	return id
   396  }
   397  
   398  // fileHash returns the content hash of the named file.
   399  func (b *Builder) fileHash(file string) string {
   400  	file, _ = fsys.OverlayPath(file)
   401  	sum, err := cache.FileHash(file)
   402  	if err != nil {
   403  		return ""
   404  	}
   405  	return buildid.HashToString(sum)
   406  }
   407  
   408  var (
   409  	counterCacheHit  = counter.New("go/buildcache/hit")
   410  	counterCacheMiss = counter.New("go/buildcache/miss")
   411  
   412  	onceIncStdlibRecompiled sync.Once
   413  	stdlibRecompiled        = counter.New("go/buildcache/stdlib-recompiled")
   414  )
   415  
   416  // useCache tries to satisfy the action a, which has action ID actionHash,
   417  // by using a cached result from an earlier build. At the moment, the only
   418  // cached result is the installed package or binary at target.
   419  // If useCache decides that the cache can be used, it sets a.buildID
   420  // and a.built for use by parent actions and then returns true.
   421  // Otherwise it sets a.buildID to a temporary build ID for use in the build
   422  // and returns false. When useCache returns false the expectation is that
   423  // the caller will build the target and then call updateBuildID to finish the
   424  // build ID computation.
   425  // When useCache returns false, it may have initiated buffering of output
   426  // during a's work. The caller should defer b.flushOutput(a), to make sure
   427  // that flushOutput is eventually called regardless of whether the action
   428  // succeeds. The flushOutput call must happen after updateBuildID.
   429  func (b *Builder) useCache(a *Action, actionHash cache.ActionID, target string, printOutput bool) (ok bool) {
   430  	// The second half of the build ID here is a placeholder for the content hash.
   431  	// It's important that the overall buildID be unlikely verging on impossible
   432  	// to appear in the output by chance, but that should be taken care of by
   433  	// the actionID half; if it also appeared in the input that would be like an
   434  	// engineered 120-bit partial SHA256 collision.
   435  	a.actionID = actionHash
   436  	actionID := buildid.HashToString(actionHash)
   437  	if a.json != nil {
   438  		a.json.ActionID = actionID
   439  	}
   440  	contentID := actionID // temporary placeholder, likely unique
   441  	a.buildID = actionID + buildIDSeparator + contentID
   442  
   443  	// Executable binaries also record the main build ID in the middle.
   444  	// See "Build IDs" comment above.
   445  	if a.Mode == "link" {
   446  		mainpkg := a.Deps[0]
   447  		a.buildID = actionID + buildIDSeparator + mainpkg.buildID + buildIDSeparator + contentID
   448  	}
   449  
   450  	// If user requested -a, we force a rebuild, so don't use the cache.
   451  	if cfg.BuildA {
   452  		if p := a.Package; p != nil && !p.Stale {
   453  			p.Stale = true
   454  			p.StaleReason = "build -a flag in use"
   455  		}
   456  		// Begin saving output for later writing to cache.
   457  		a.output = []byte{}
   458  		return false
   459  	}
   460  
   461  	defer func() {
   462  		// Increment counters for cache hits and misses based on the return value
   463  		// of this function. Don't increment counters if we return early because of
   464  		// cfg.BuildA above because we don't even look at the cache in that case.
   465  		if ok {
   466  			counterCacheHit.Inc()
   467  		} else {
   468  			if a.Package != nil && a.Package.Standard {
   469  				onceIncStdlibRecompiled.Do(stdlibRecompiled.Inc)
   470  			}
   471  			counterCacheMiss.Inc()
   472  		}
   473  	}()
   474  
   475  	c := cache.Default()
   476  
   477  	if target != "" {
   478  		buildID, _ := buildid.ReadFile(target)
   479  		if strings.HasPrefix(buildID, actionID+buildIDSeparator) {
   480  			a.buildID = buildID
   481  			if a.json != nil {
   482  				a.json.BuildID = a.buildID
   483  			}
   484  			a.built = target
   485  			// Poison a.Target to catch uses later in the build.
   486  			a.Target = "DO NOT USE - " + a.Mode
   487  			return true
   488  		}
   489  		// Special case for building a main package: if the only thing we
   490  		// want the package for is to link a binary, and the binary is
   491  		// already up-to-date, then to avoid a rebuild, report the package
   492  		// as up-to-date as well. See "Build IDs" comment above.
   493  		// TODO(rsc): Rewrite this code to use a TryCache func on the link action.
   494  		if !b.NeedExport && a.Mode == "build" && len(a.triggers) == 1 && a.triggers[0].Mode == "link" {
   495  			if id := strings.Split(buildID, buildIDSeparator); len(id) == 4 && id[1] == actionID {
   496  				// Temporarily assume a.buildID is the package build ID
   497  				// stored in the installed binary, and see if that makes
   498  				// the upcoming link action ID a match. If so, report that
   499  				// we built the package, safe in the knowledge that the
   500  				// link step will not ask us for the actual package file.
   501  				// Note that (*Builder).LinkAction arranged that all of
   502  				// a.triggers[0]'s dependencies other than a are also
   503  				// dependencies of a, so that we can be sure that,
   504  				// other than a.buildID, b.linkActionID is only accessing
   505  				// build IDs of completed actions.
   506  				oldBuildID := a.buildID
   507  				a.buildID = id[1] + buildIDSeparator + id[2]
   508  				linkID := buildid.HashToString(b.linkActionID(a.triggers[0]))
   509  				if id[0] == linkID {
   510  					// Best effort attempt to display output from the compile and link steps.
   511  					// If it doesn't work, it doesn't work: reusing the cached binary is more
   512  					// important than reprinting diagnostic information.
   513  					if printOutput {
   514  						showStdout(b, c, a, "stdout")      // compile output
   515  						showStdout(b, c, a, "link-stdout") // link output
   516  					}
   517  
   518  					// Poison a.Target to catch uses later in the build.
   519  					a.Target = "DO NOT USE - main build pseudo-cache Target"
   520  					a.built = "DO NOT USE - main build pseudo-cache built"
   521  					if a.json != nil {
   522  						a.json.BuildID = a.buildID
   523  					}
   524  					return true
   525  				}
   526  				// Otherwise restore old build ID for main build.
   527  				a.buildID = oldBuildID
   528  			}
   529  		}
   530  	}
   531  
   532  	// Special case for linking a test binary: if the only thing we
   533  	// want the binary for is to run the test, and the test result is cached,
   534  	// then to avoid the link step, report the link as up-to-date.
   535  	// We avoid the nested build ID problem in the previous special case
   536  	// by recording the test results in the cache under the action ID half.
   537  	if len(a.triggers) == 1 && a.triggers[0].TryCache != nil && a.triggers[0].TryCache(b, a.triggers[0]) {
   538  		// Best effort attempt to display output from the compile and link steps.
   539  		// If it doesn't work, it doesn't work: reusing the test result is more
   540  		// important than reprinting diagnostic information.
   541  		if printOutput {
   542  			showStdout(b, c, a.Deps[0], "stdout")      // compile output
   543  			showStdout(b, c, a.Deps[0], "link-stdout") // link output
   544  		}
   545  
   546  		// Poison a.Target to catch uses later in the build.
   547  		a.Target = "DO NOT USE -  pseudo-cache Target"
   548  		a.built = "DO NOT USE - pseudo-cache built"
   549  		return true
   550  	}
   551  
   552  	// Check to see if the action output is cached.
   553  	if file, _, err := cache.GetFile(c, actionHash); err == nil {
   554  		if a.Mode == "preprocess PGO profile" {
   555  			// Preprocessed PGO profiles don't embed a build ID, so
   556  			// skip the build ID lookup.
   557  			// TODO(prattmic): better would be to add a build ID to the format.
   558  			a.built = file
   559  			a.Target = "DO NOT USE - using cache"
   560  			return true
   561  		}
   562  		if buildID, err := buildid.ReadFile(file); err == nil {
   563  			if printOutput {
   564  				showStdout(b, c, a, "stdout")
   565  			}
   566  			a.built = file
   567  			a.Target = "DO NOT USE - using cache"
   568  			a.buildID = buildID
   569  			if a.json != nil {
   570  				a.json.BuildID = a.buildID
   571  			}
   572  			if p := a.Package; p != nil && target != "" {
   573  				p.Stale = true
   574  				// Clearer than explaining that something else is stale.
   575  				p.StaleReason = "not installed but available in build cache"
   576  			}
   577  			return true
   578  		}
   579  	}
   580  
   581  	// If we've reached this point, we can't use the cache for the action.
   582  	if p := a.Package; p != nil && !p.Stale {
   583  		p.Stale = true
   584  		p.StaleReason = "build ID mismatch"
   585  		if b.IsCmdList {
   586  			// Since we may end up printing StaleReason, include more detail.
   587  			for _, p1 := range p.Internal.Imports {
   588  				if p1.Stale && p1.StaleReason != "" {
   589  					if strings.HasPrefix(p1.StaleReason, "stale dependency: ") {
   590  						p.StaleReason = p1.StaleReason
   591  						break
   592  					}
   593  					if strings.HasPrefix(p.StaleReason, "build ID mismatch") {
   594  						p.StaleReason = "stale dependency: " + p1.ImportPath
   595  					}
   596  				}
   597  			}
   598  		}
   599  	}
   600  
   601  	// Begin saving output for later writing to cache.
   602  	a.output = []byte{}
   603  	return false
   604  }
   605  
   606  func showStdout(b *Builder, c cache.Cache, a *Action, key string) error {
   607  	actionID := a.actionID
   608  
   609  	stdout, stdoutEntry, err := cache.GetBytes(c, cache.Subkey(actionID, key))
   610  	if err != nil {
   611  		return err
   612  	}
   613  
   614  	if len(stdout) > 0 {
   615  		sh := b.Shell(a)
   616  		if cfg.BuildX || cfg.BuildN {
   617  			sh.ShowCmd("", "%s  # internal", joinUnambiguously(str.StringList("cat", c.OutputFile(stdoutEntry.OutputID))))
   618  		}
   619  		if !cfg.BuildN {
   620  			sh.Print(string(stdout))
   621  		}
   622  	}
   623  	return nil
   624  }
   625  
   626  // flushOutput flushes the output being queued in a.
   627  func (b *Builder) flushOutput(a *Action) {
   628  	b.Shell(a).Print(string(a.output))
   629  	a.output = nil
   630  }
   631  
   632  // updateBuildID updates the build ID in the target written by action a.
   633  // It requires that useCache was called for action a and returned false,
   634  // and that the build was then carried out and given the temporary
   635  // a.buildID to record as the build ID in the resulting package or binary.
   636  // updateBuildID computes the final content ID and updates the build IDs
   637  // in the binary.
   638  //
   639  // Keep in sync with src/cmd/buildid/buildid.go
   640  func (b *Builder) updateBuildID(a *Action, target string, rewrite bool) error {
   641  	sh := b.Shell(a)
   642  
   643  	if cfg.BuildX || cfg.BuildN {
   644  		if rewrite {
   645  			sh.ShowCmd("", "%s # internal", joinUnambiguously(str.StringList(base.Tool("buildid"), "-w", target)))
   646  		}
   647  		if cfg.BuildN {
   648  			return nil
   649  		}
   650  	}
   651  
   652  	c := cache.Default()
   653  
   654  	// Cache output from compile/link, even if we don't do the rest.
   655  	switch a.Mode {
   656  	case "build":
   657  		cache.PutBytes(c, cache.Subkey(a.actionID, "stdout"), a.output)
   658  	case "link":
   659  		// Even though we don't cache the binary, cache the linker text output.
   660  		// We might notice that an installed binary is up-to-date but still
   661  		// want to pretend to have run the linker.
   662  		// Store it under the main package's action ID
   663  		// to make it easier to find when that's all we have.
   664  		for _, a1 := range a.Deps {
   665  			if p1 := a1.Package; p1 != nil && p1.Name == "main" {
   666  				cache.PutBytes(c, cache.Subkey(a1.actionID, "link-stdout"), a.output)
   667  				break
   668  			}
   669  		}
   670  	}
   671  
   672  	// Find occurrences of old ID and compute new content-based ID.
   673  	r, err := os.Open(target)
   674  	if err != nil {
   675  		return err
   676  	}
   677  	matches, hash, err := buildid.FindAndHash(r, a.buildID, 0)
   678  	r.Close()
   679  	if err != nil {
   680  		return err
   681  	}
   682  	newID := a.buildID[:strings.LastIndex(a.buildID, buildIDSeparator)] + buildIDSeparator + buildid.HashToString(hash)
   683  	if len(newID) != len(a.buildID) {
   684  		return fmt.Errorf("internal error: build ID length mismatch %q vs %q", a.buildID, newID)
   685  	}
   686  
   687  	// Replace with new content-based ID.
   688  	a.buildID = newID
   689  	if a.json != nil {
   690  		a.json.BuildID = a.buildID
   691  	}
   692  	if len(matches) == 0 {
   693  		// Assume the user specified -buildid= to override what we were going to choose.
   694  		return nil
   695  	}
   696  
   697  	if rewrite {
   698  		w, err := os.OpenFile(target, os.O_RDWR, 0)
   699  		if err != nil {
   700  			return err
   701  		}
   702  		err = buildid.Rewrite(w, matches, newID)
   703  		if err != nil {
   704  			w.Close()
   705  			return err
   706  		}
   707  		if err := w.Close(); err != nil {
   708  			return err
   709  		}
   710  	}
   711  
   712  	// Cache package builds, but not binaries (link steps).
   713  	// The expectation is that binaries are not reused
   714  	// nearly as often as individual packages, and they're
   715  	// much larger, so the cache-footprint-to-utility ratio
   716  	// of binaries is much lower for binaries.
   717  	// Not caching the link step also makes sure that repeated "go run" at least
   718  	// always rerun the linker, so that they don't get too fast.
   719  	// (We don't want people thinking go is a scripting language.)
   720  	// Note also that if we start caching binaries, then we will
   721  	// copy the binaries out of the cache to run them, and then
   722  	// that will mean the go process is itself writing a binary
   723  	// and then executing it, so we will need to defend against
   724  	// ETXTBSY problems as discussed in exec.go and golang.org/issue/22220.
   725  	if a.Mode == "build" {
   726  		r, err := os.Open(target)
   727  		if err == nil {
   728  			if a.output == nil {
   729  				panic("internal error: a.output not set")
   730  			}
   731  			outputID, _, err := c.Put(a.actionID, r)
   732  			r.Close()
   733  			if err == nil && cfg.BuildX {
   734  				sh.ShowCmd("", "%s # internal", joinUnambiguously(str.StringList("cp", target, c.OutputFile(outputID))))
   735  			}
   736  			if b.NeedExport {
   737  				if err != nil {
   738  					return err
   739  				}
   740  				a.Package.Export = c.OutputFile(outputID)
   741  				a.Package.BuildID = a.buildID
   742  			}
   743  		}
   744  	}
   745  
   746  	return nil
   747  }
   748  

View as plain text