...

Source file src/cmd/internal/obj/link.go

Documentation: cmd/internal/obj

     1  // Derived from Inferno utils/6l/l.h and related files.
     2  // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/l.h
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package obj
    32  
    33  import (
    34  	"bufio"
    35  	"cmd/internal/dwarf"
    36  	"cmd/internal/goobj"
    37  	"cmd/internal/objabi"
    38  	"cmd/internal/src"
    39  	"cmd/internal/sys"
    40  	"encoding/binary"
    41  	"fmt"
    42  	"internal/abi"
    43  	"sync"
    44  	"sync/atomic"
    45  )
    46  
    47  // An Addr is an argument to an instruction.
    48  // The general forms and their encodings are:
    49  //
    50  //	sym±offset(symkind)(reg)(index*scale)
    51  //		Memory reference at address &sym(symkind) + offset + reg + index*scale.
    52  //		Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted.
    53  //		If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg).
    54  //		To force a parsing as index*scale, write (index*1).
    55  //		Encoding:
    56  //			type = TYPE_MEM
    57  //			name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE)
    58  //			sym = sym
    59  //			offset = ±offset
    60  //			reg = reg (REG_*)
    61  //			index = index (REG_*)
    62  //			scale = scale (1, 2, 4, 8)
    63  //
    64  //	$<mem>
    65  //		Effective address of memory reference <mem>, defined above.
    66  //		Encoding: same as memory reference, but type = TYPE_ADDR.
    67  //
    68  //	$<±integer value>
    69  //		This is a special case of $<mem>, in which only ±offset is present.
    70  //		It has a separate type for easy recognition.
    71  //		Encoding:
    72  //			type = TYPE_CONST
    73  //			offset = ±integer value
    74  //
    75  //	*<mem>
    76  //		Indirect reference through memory reference <mem>, defined above.
    77  //		Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function
    78  //		pointer stored in the data word sym(SB), not a function named sym(SB).
    79  //		Encoding: same as above, but type = TYPE_INDIR.
    80  //
    81  //	$*$<mem>
    82  //		No longer used.
    83  //		On machines with actual SB registers, $*$<mem> forced the
    84  //		instruction encoding to use a full 32-bit constant, never a
    85  //		reference relative to SB.
    86  //
    87  //	$<floating point literal>
    88  //		Floating point constant value.
    89  //		Encoding:
    90  //			type = TYPE_FCONST
    91  //			val = floating point value
    92  //
    93  //	$<string literal, up to 8 chars>
    94  //		String literal value (raw bytes used for DATA instruction).
    95  //		Encoding:
    96  //			type = TYPE_SCONST
    97  //			val = string
    98  //
    99  //	<symbolic constant name>
   100  //		Special symbolic constants for ARM64, such as conditional flags, tlbi_op and so on.
   101  //		Encoding:
   102  //			type = TYPE_SPECIAL
   103  //			offset = The constant value corresponding to this symbol
   104  //
   105  //	<register name>
   106  //		Any register: integer, floating point, control, segment, and so on.
   107  //		If looking for specific register kind, must check type and reg value range.
   108  //		Encoding:
   109  //			type = TYPE_REG
   110  //			reg = reg (REG_*)
   111  //
   112  //	x(PC)
   113  //		Encoding:
   114  //			type = TYPE_BRANCH
   115  //			val = Prog* reference OR ELSE offset = target pc (branch takes priority)
   116  //
   117  //	$±x-±y
   118  //		Final argument to TEXT, specifying local frame size x and argument size y.
   119  //		In this form, x and y are integer literals only, not arbitrary expressions.
   120  //		This avoids parsing ambiguities due to the use of - as a separator.
   121  //		The ± are optional.
   122  //		If the final argument to TEXT omits the -±y, the encoding should still
   123  //		use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown.
   124  //		Encoding:
   125  //			type = TYPE_TEXTSIZE
   126  //			offset = x
   127  //			val = int32(y)
   128  //
   129  //	reg<<shift, reg>>shift, reg->shift, reg@>shift
   130  //		Shifted register value, for ARM and ARM64.
   131  //		In this form, reg must be a register and shift can be a register or an integer constant.
   132  //		Encoding:
   133  //			type = TYPE_SHIFT
   134  //		On ARM:
   135  //			offset = (reg&15) | shifttype<<5 | count
   136  //			shifttype = 0, 1, 2, 3 for <<, >>, ->, @>
   137  //			count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant.
   138  //		On ARM64:
   139  //			offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10
   140  //			shifttype = 0, 1, 2 for <<, >>, ->
   141  //
   142  //	(reg, reg)
   143  //		A destination register pair. When used as the last argument of an instruction,
   144  //		this form makes clear that both registers are destinations.
   145  //		Encoding:
   146  //			type = TYPE_REGREG
   147  //			reg = first register
   148  //			offset = second register
   149  //
   150  //	[reg, reg, reg-reg]
   151  //		Register list for ARM, ARM64, 386/AMD64.
   152  //		Encoding:
   153  //			type = TYPE_REGLIST
   154  //		On ARM:
   155  //			offset = bit mask of registers in list; R0 is low bit.
   156  //		On ARM64:
   157  //			offset = register count (Q:size) | arrangement (opcode) | first register
   158  //		On 386/AMD64:
   159  //			reg = range low register
   160  //			offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange)
   161  //
   162  //	reg, reg
   163  //		Register pair for ARM.
   164  //		TYPE_REGREG2
   165  //
   166  //	(reg+reg)
   167  //		Register pair for PPC64.
   168  //		Encoding:
   169  //			type = TYPE_MEM
   170  //			reg = first register
   171  //			index = second register
   172  //			scale = 1
   173  //
   174  //	reg.[US]XT[BHWX]
   175  //		Register extension for ARM64
   176  //		Encoding:
   177  //			type = TYPE_REG
   178  //			reg = REG_[US]XT[BHWX] + register + shift amount
   179  //			offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10)
   180  //
   181  //	reg.<T>
   182  //		Register arrangement for ARM64 SIMD register
   183  //		e.g.: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16
   184  //		Encoding:
   185  //			type = TYPE_REG
   186  //			reg = REG_ARNG + register + arrangement
   187  //
   188  //	reg.<T>[index]
   189  //		Register element for ARM64
   190  //		Encoding:
   191  //			type = TYPE_REG
   192  //			reg = REG_ELEM + register + arrangement
   193  //			index = element index
   194  
   195  type Addr struct {
   196  	Reg    int16
   197  	Index  int16
   198  	Scale  int16 // Sometimes holds a register.
   199  	Type   AddrType
   200  	Name   AddrName
   201  	Class  int8
   202  	Offset int64
   203  	Sym    *LSym
   204  
   205  	// argument value:
   206  	//	for TYPE_SCONST, a string
   207  	//	for TYPE_FCONST, a float64
   208  	//	for TYPE_BRANCH, a *Prog (optional)
   209  	//	for TYPE_TEXTSIZE, an int32 (optional)
   210  	Val interface{}
   211  }
   212  
   213  type AddrName int8
   214  
   215  const (
   216  	NAME_NONE AddrName = iota
   217  	NAME_EXTERN
   218  	NAME_STATIC
   219  	NAME_AUTO
   220  	NAME_PARAM
   221  	// A reference to name@GOT(SB) is a reference to the entry in the global offset
   222  	// table for 'name'.
   223  	NAME_GOTREF
   224  	// Indicates that this is a reference to a TOC anchor.
   225  	NAME_TOCREF
   226  )
   227  
   228  //go:generate stringer -type AddrType
   229  
   230  type AddrType uint8
   231  
   232  const (
   233  	TYPE_NONE AddrType = iota
   234  	TYPE_BRANCH
   235  	TYPE_TEXTSIZE
   236  	TYPE_MEM
   237  	TYPE_CONST
   238  	TYPE_FCONST
   239  	TYPE_SCONST
   240  	TYPE_REG
   241  	TYPE_ADDR
   242  	TYPE_SHIFT
   243  	TYPE_REGREG
   244  	TYPE_REGREG2
   245  	TYPE_INDIR
   246  	TYPE_REGLIST
   247  	TYPE_SPECIAL
   248  )
   249  
   250  func (a *Addr) Target() *Prog {
   251  	if a.Type == TYPE_BRANCH && a.Val != nil {
   252  		return a.Val.(*Prog)
   253  	}
   254  	return nil
   255  }
   256  func (a *Addr) SetTarget(t *Prog) {
   257  	if a.Type != TYPE_BRANCH {
   258  		panic("setting branch target when type is not TYPE_BRANCH")
   259  	}
   260  	a.Val = t
   261  }
   262  
   263  func (a *Addr) SetConst(v int64) {
   264  	a.Sym = nil
   265  	a.Type = TYPE_CONST
   266  	a.Offset = v
   267  }
   268  
   269  // Prog describes a single machine instruction.
   270  //
   271  // The general instruction form is:
   272  //
   273  //	(1) As.Scond From [, ...RestArgs], To
   274  //	(2) As.Scond From, Reg [, ...RestArgs], To, RegTo2
   275  //
   276  // where As is an opcode and the others are arguments:
   277  // From, Reg are sources, and To, RegTo2 are destinations.
   278  // RestArgs can hold additional sources and destinations.
   279  // Usually, not all arguments are present.
   280  // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2.
   281  // The Scond field holds additional condition bits for systems (like arm)
   282  // that have generalized conditional execution.
   283  // (2) form is present for compatibility with older code,
   284  // to avoid too much changes in a single swing.
   285  // (1) scheme is enough to express any kind of operand combination.
   286  //
   287  // Jump instructions use the To.Val field to point to the target *Prog,
   288  // which must be in the same linked list as the jump instruction.
   289  //
   290  // The Progs for a given function are arranged in a list linked through the Link field.
   291  //
   292  // Each Prog is charged to a specific source line in the debug information,
   293  // specified by Pos.Line().
   294  // Every Prog has a Ctxt field that defines its context.
   295  // For performance reasons, Progs are usually bulk allocated, cached, and reused;
   296  // those bulk allocators should always be used, rather than new(Prog).
   297  //
   298  // The other fields not yet mentioned are for use by the back ends and should
   299  // be left zeroed by creators of Prog lists.
   300  type Prog struct {
   301  	Ctxt     *Link     // linker context
   302  	Link     *Prog     // next Prog in linked list
   303  	From     Addr      // first source operand
   304  	RestArgs []AddrPos // can pack any operands that not fit into {Prog.From, Prog.To}, same kinds of operands are saved in order
   305  	To       Addr      // destination operand (second is RegTo2 below)
   306  	Pool     *Prog     // constant pool entry, for arm,arm64 back ends
   307  	Forwd    *Prog     // for x86 back end
   308  	Rel      *Prog     // for x86, arm back ends
   309  	Pc       int64     // for back ends or assembler: virtual or actual program counter, depending on phase
   310  	Pos      src.XPos  // source position of this instruction
   311  	Spadj    int32     // effect of instruction on stack pointer (increment or decrement amount)
   312  	As       As        // assembler opcode
   313  	Reg      int16     // 2nd source operand
   314  	RegTo2   int16     // 2nd destination operand
   315  	Mark     uint16    // bitmask of arch-specific items
   316  	Optab    uint16    // arch-specific opcode index
   317  	Scond    uint8     // bits that describe instruction suffixes (e.g. ARM conditions, RISCV Rounding Mode)
   318  	Back     uint8     // for x86 back end: backwards branch state
   319  	Ft       uint8     // for x86 back end: type index of Prog.From
   320  	Tt       uint8     // for x86 back end: type index of Prog.To
   321  	Isize    uint8     // for x86 back end: size of the instruction in bytes
   322  }
   323  
   324  // AddrPos indicates whether the operand is the source or the destination.
   325  type AddrPos struct {
   326  	Addr
   327  	Pos OperandPos
   328  }
   329  
   330  type OperandPos int8
   331  
   332  const (
   333  	Source OperandPos = iota
   334  	Destination
   335  )
   336  
   337  // From3Type returns p.GetFrom3().Type, or TYPE_NONE when
   338  // p.GetFrom3() returns nil.
   339  func (p *Prog) From3Type() AddrType {
   340  	from3 := p.GetFrom3()
   341  	if from3 == nil {
   342  		return TYPE_NONE
   343  	}
   344  	return from3.Type
   345  }
   346  
   347  // GetFrom3 returns second source operand (the first is Prog.From).
   348  // The same kinds of operands are saved in order so GetFrom3 actually
   349  // return the first source operand in p.RestArgs.
   350  // In combination with Prog.From and Prog.To it makes common 3 operand
   351  // case easier to use.
   352  func (p *Prog) GetFrom3() *Addr {
   353  	for i := range p.RestArgs {
   354  		if p.RestArgs[i].Pos == Source {
   355  			return &p.RestArgs[i].Addr
   356  		}
   357  	}
   358  	return nil
   359  }
   360  
   361  // AddRestSource assigns []Args{{a, Source}} to p.RestArgs.
   362  func (p *Prog) AddRestSource(a Addr) {
   363  	p.RestArgs = append(p.RestArgs, AddrPos{a, Source})
   364  }
   365  
   366  // AddRestSourceReg calls p.AddRestSource with a register Addr containing reg.
   367  func (p *Prog) AddRestSourceReg(reg int16) {
   368  	p.AddRestSource(Addr{Type: TYPE_REG, Reg: reg})
   369  }
   370  
   371  // AddRestSourceConst calls p.AddRestSource with a const Addr containing off.
   372  func (p *Prog) AddRestSourceConst(off int64) {
   373  	p.AddRestSource(Addr{Type: TYPE_CONST, Offset: off})
   374  }
   375  
   376  // AddRestDest assigns []Args{{a, Destination}} to p.RestArgs when the second destination
   377  // operand does not fit into prog.RegTo2.
   378  func (p *Prog) AddRestDest(a Addr) {
   379  	p.RestArgs = append(p.RestArgs, AddrPos{a, Destination})
   380  }
   381  
   382  // GetTo2 returns the second destination operand.
   383  // The same kinds of operands are saved in order so GetTo2 actually
   384  // return the first destination operand in Prog.RestArgs[]
   385  func (p *Prog) GetTo2() *Addr {
   386  	for i := range p.RestArgs {
   387  		if p.RestArgs[i].Pos == Destination {
   388  			return &p.RestArgs[i].Addr
   389  		}
   390  	}
   391  	return nil
   392  }
   393  
   394  // AddRestSourceArgs assigns more than one source operands to p.RestArgs.
   395  func (p *Prog) AddRestSourceArgs(args []Addr) {
   396  	for i := range args {
   397  		p.RestArgs = append(p.RestArgs, AddrPos{args[i], Source})
   398  	}
   399  }
   400  
   401  // An As denotes an assembler opcode.
   402  // There are some portable opcodes, declared here in package obj,
   403  // that are common to all architectures.
   404  // However, the majority of opcodes are arch-specific
   405  // and are declared in their respective architecture's subpackage.
   406  type As int16
   407  
   408  // These are the portable opcodes.
   409  const (
   410  	AXXX As = iota
   411  	ACALL
   412  	ADUFFCOPY
   413  	ADUFFZERO
   414  	AEND
   415  	AFUNCDATA
   416  	AJMP
   417  	ANOP
   418  	APCALIGN
   419  	APCALIGNMAX // currently x86, amd64 and arm64
   420  	APCDATA
   421  	ARET
   422  	AGETCALLERPC
   423  	ATEXT
   424  	AUNDEF
   425  	A_ARCHSPECIFIC
   426  )
   427  
   428  // Each architecture is allotted a distinct subspace of opcode values
   429  // for declaring its arch-specific opcodes.
   430  // Within this subspace, the first arch-specific opcode should be
   431  // at offset A_ARCHSPECIFIC.
   432  //
   433  // Subspaces are aligned to a power of two so opcodes can be masked
   434  // with AMask and used as compact array indices.
   435  const (
   436  	ABase386 = (1 + iota) << 11
   437  	ABaseARM
   438  	ABaseAMD64
   439  	ABasePPC64
   440  	ABaseARM64
   441  	ABaseMIPS
   442  	ABaseLoong64
   443  	ABaseRISCV
   444  	ABaseS390X
   445  	ABaseWasm
   446  
   447  	AllowedOpCodes = 1 << 11            // The number of opcodes available for any given architecture.
   448  	AMask          = AllowedOpCodes - 1 // AND with this to use the opcode as an array index.
   449  )
   450  
   451  // An LSym is the sort of symbol that is written to an object file.
   452  // It represents Go symbols in a flat pkg+"."+name namespace.
   453  type LSym struct {
   454  	Name string
   455  	Type objabi.SymKind
   456  	Attribute
   457  
   458  	Size   int64
   459  	Gotype *LSym
   460  	P      []byte
   461  	R      []Reloc
   462  
   463  	Extra *interface{} // *FuncInfo, *VarInfo, *FileInfo, or *TypeInfo, if present
   464  
   465  	Pkg    string
   466  	PkgIdx int32
   467  	SymIdx int32
   468  }
   469  
   470  // A FuncInfo contains extra fields for STEXT symbols.
   471  type FuncInfo struct {
   472  	Args      int32
   473  	Locals    int32
   474  	Align     int32
   475  	FuncID    abi.FuncID
   476  	FuncFlag  abi.FuncFlag
   477  	StartLine int32
   478  	Text      *Prog
   479  	Autot     map[*LSym]struct{}
   480  	Pcln      Pcln
   481  	InlMarks  []InlMark
   482  	spills    []RegSpill
   483  
   484  	dwarfInfoSym       *LSym
   485  	dwarfLocSym        *LSym
   486  	dwarfRangesSym     *LSym
   487  	dwarfAbsFnSym      *LSym
   488  	dwarfDebugLinesSym *LSym
   489  
   490  	GCArgs             *LSym
   491  	GCLocals           *LSym
   492  	StackObjects       *LSym
   493  	OpenCodedDeferInfo *LSym
   494  	ArgInfo            *LSym // argument info for traceback
   495  	ArgLiveInfo        *LSym // argument liveness info for traceback
   496  	WrapInfo           *LSym // for wrapper, info of wrapped function
   497  	JumpTables         []JumpTable
   498  
   499  	FuncInfoSym   *LSym
   500  	WasmImportSym *LSym
   501  	WasmImport    *WasmImport
   502  
   503  	sehUnwindInfoSym *LSym
   504  }
   505  
   506  // JumpTable represents a table used for implementing multi-way
   507  // computed branching, used typically for implementing switches.
   508  // Sym is the table itself, and Targets is a list of target
   509  // instructions to go to for the computed branch index.
   510  type JumpTable struct {
   511  	Sym     *LSym
   512  	Targets []*Prog
   513  }
   514  
   515  // NewFuncInfo allocates and returns a FuncInfo for LSym.
   516  func (s *LSym) NewFuncInfo() *FuncInfo {
   517  	if s.Extra != nil {
   518  		panic(fmt.Sprintf("invalid use of LSym - NewFuncInfo with Extra of type %T", *s.Extra))
   519  	}
   520  	f := new(FuncInfo)
   521  	s.Extra = new(interface{})
   522  	*s.Extra = f
   523  	return f
   524  }
   525  
   526  // Func returns the *FuncInfo associated with s, or else nil.
   527  func (s *LSym) Func() *FuncInfo {
   528  	if s.Extra == nil {
   529  		return nil
   530  	}
   531  	f, _ := (*s.Extra).(*FuncInfo)
   532  	return f
   533  }
   534  
   535  type VarInfo struct {
   536  	dwarfInfoSym *LSym
   537  }
   538  
   539  // NewVarInfo allocates and returns a VarInfo for LSym.
   540  func (s *LSym) NewVarInfo() *VarInfo {
   541  	if s.Extra != nil {
   542  		panic(fmt.Sprintf("invalid use of LSym - NewVarInfo with Extra of type %T", *s.Extra))
   543  	}
   544  	f := new(VarInfo)
   545  	s.Extra = new(interface{})
   546  	*s.Extra = f
   547  	return f
   548  }
   549  
   550  // VarInfo returns the *VarInfo associated with s, or else nil.
   551  func (s *LSym) VarInfo() *VarInfo {
   552  	if s.Extra == nil {
   553  		return nil
   554  	}
   555  	f, _ := (*s.Extra).(*VarInfo)
   556  	return f
   557  }
   558  
   559  // A FileInfo contains extra fields for SDATA symbols backed by files.
   560  // (If LSym.Extra is a *FileInfo, LSym.P == nil.)
   561  type FileInfo struct {
   562  	Name string // name of file to read into object file
   563  	Size int64  // length of file
   564  }
   565  
   566  // NewFileInfo allocates and returns a FileInfo for LSym.
   567  func (s *LSym) NewFileInfo() *FileInfo {
   568  	if s.Extra != nil {
   569  		panic(fmt.Sprintf("invalid use of LSym - NewFileInfo with Extra of type %T", *s.Extra))
   570  	}
   571  	f := new(FileInfo)
   572  	s.Extra = new(interface{})
   573  	*s.Extra = f
   574  	return f
   575  }
   576  
   577  // File returns the *FileInfo associated with s, or else nil.
   578  func (s *LSym) File() *FileInfo {
   579  	if s.Extra == nil {
   580  		return nil
   581  	}
   582  	f, _ := (*s.Extra).(*FileInfo)
   583  	return f
   584  }
   585  
   586  // A TypeInfo contains information for a symbol
   587  // that contains a runtime._type.
   588  type TypeInfo struct {
   589  	Type interface{} // a *cmd/compile/internal/types.Type
   590  }
   591  
   592  func (s *LSym) NewTypeInfo() *TypeInfo {
   593  	if s.Extra != nil {
   594  		panic(fmt.Sprintf("invalid use of LSym - NewTypeInfo with Extra of type %T", *s.Extra))
   595  	}
   596  	t := new(TypeInfo)
   597  	s.Extra = new(interface{})
   598  	*s.Extra = t
   599  	return t
   600  }
   601  
   602  // WasmImport represents a WebAssembly (WASM) imported function with
   603  // parameters and results translated into WASM types based on the Go function
   604  // declaration.
   605  type WasmImport struct {
   606  	// Module holds the WASM module name specified by the //go:wasmimport
   607  	// directive.
   608  	Module string
   609  	// Name holds the WASM imported function name specified by the
   610  	// //go:wasmimport directive.
   611  	Name string
   612  	// Params holds the imported function parameter fields.
   613  	Params []WasmField
   614  	// Results holds the imported function result fields.
   615  	Results []WasmField
   616  }
   617  
   618  func (wi *WasmImport) CreateSym(ctxt *Link) *LSym {
   619  	var sym LSym
   620  
   621  	var b [8]byte
   622  	writeByte := func(x byte) {
   623  		sym.WriteBytes(ctxt, sym.Size, []byte{x})
   624  	}
   625  	writeUint32 := func(x uint32) {
   626  		binary.LittleEndian.PutUint32(b[:], x)
   627  		sym.WriteBytes(ctxt, sym.Size, b[:4])
   628  	}
   629  	writeInt64 := func(x int64) {
   630  		binary.LittleEndian.PutUint64(b[:], uint64(x))
   631  		sym.WriteBytes(ctxt, sym.Size, b[:])
   632  	}
   633  	writeString := func(s string) {
   634  		writeUint32(uint32(len(s)))
   635  		sym.WriteString(ctxt, sym.Size, len(s), s)
   636  	}
   637  	writeString(wi.Module)
   638  	writeString(wi.Name)
   639  	writeUint32(uint32(len(wi.Params)))
   640  	for _, f := range wi.Params {
   641  		writeByte(byte(f.Type))
   642  		writeInt64(f.Offset)
   643  	}
   644  	writeUint32(uint32(len(wi.Results)))
   645  	for _, f := range wi.Results {
   646  		writeByte(byte(f.Type))
   647  		writeInt64(f.Offset)
   648  	}
   649  
   650  	return &sym
   651  }
   652  
   653  type WasmField struct {
   654  	Type WasmFieldType
   655  	// Offset holds the frame-pointer-relative locations for Go's stack-based
   656  	// ABI. This is used by the src/cmd/internal/wasm package to map WASM
   657  	// import parameters to the Go stack in a wrapper function.
   658  	Offset int64
   659  }
   660  
   661  type WasmFieldType byte
   662  
   663  const (
   664  	WasmI32 WasmFieldType = iota
   665  	WasmI64
   666  	WasmF32
   667  	WasmF64
   668  	WasmPtr
   669  )
   670  
   671  type InlMark struct {
   672  	// When unwinding from an instruction in an inlined body, mark
   673  	// where we should unwind to.
   674  	// id records the global inlining id of the inlined body.
   675  	// p records the location of an instruction in the parent (inliner) frame.
   676  	p  *Prog
   677  	id int32
   678  }
   679  
   680  // Mark p as the instruction to set as the pc when
   681  // "unwinding" the inlining global frame id. Usually it should be
   682  // instruction with a file:line at the callsite, and occur
   683  // just before the body of the inlined function.
   684  func (fi *FuncInfo) AddInlMark(p *Prog, id int32) {
   685  	fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id})
   686  }
   687  
   688  // AddSpill appends a spill record to the list for FuncInfo fi
   689  func (fi *FuncInfo) AddSpill(s RegSpill) {
   690  	fi.spills = append(fi.spills, s)
   691  }
   692  
   693  // Record the type symbol for an auto variable so that the linker
   694  // an emit DWARF type information for the type.
   695  func (fi *FuncInfo) RecordAutoType(gotype *LSym) {
   696  	if fi.Autot == nil {
   697  		fi.Autot = make(map[*LSym]struct{})
   698  	}
   699  	fi.Autot[gotype] = struct{}{}
   700  }
   701  
   702  //go:generate stringer -type ABI
   703  
   704  // ABI is the calling convention of a text symbol.
   705  type ABI uint8
   706  
   707  const (
   708  	// ABI0 is the stable stack-based ABI. It's important that the
   709  	// value of this is "0": we can't distinguish between
   710  	// references to data and ABI0 text symbols in assembly code,
   711  	// and hence this doesn't distinguish between symbols without
   712  	// an ABI and text symbols with ABI0.
   713  	ABI0 ABI = iota
   714  
   715  	// ABIInternal is the internal ABI that may change between Go
   716  	// versions. All Go functions use the internal ABI and the
   717  	// compiler generates wrappers for calls to and from other
   718  	// ABIs.
   719  	ABIInternal
   720  
   721  	ABICount
   722  )
   723  
   724  // ParseABI converts from a string representation in 'abistr' to the
   725  // corresponding ABI value. Second return value is TRUE if the
   726  // abi string is recognized, FALSE otherwise.
   727  func ParseABI(abistr string) (ABI, bool) {
   728  	switch abistr {
   729  	default:
   730  		return ABI0, false
   731  	case "ABI0":
   732  		return ABI0, true
   733  	case "ABIInternal":
   734  		return ABIInternal, true
   735  	}
   736  }
   737  
   738  // ABISet is a bit set of ABI values.
   739  type ABISet uint8
   740  
   741  const (
   742  	// ABISetCallable is the set of all ABIs any function could
   743  	// potentially be called using.
   744  	ABISetCallable ABISet = (1 << ABI0) | (1 << ABIInternal)
   745  )
   746  
   747  // Ensure ABISet is big enough to hold all ABIs.
   748  var _ ABISet = 1 << (ABICount - 1)
   749  
   750  func ABISetOf(abi ABI) ABISet {
   751  	return 1 << abi
   752  }
   753  
   754  func (a *ABISet) Set(abi ABI, value bool) {
   755  	if value {
   756  		*a |= 1 << abi
   757  	} else {
   758  		*a &^= 1 << abi
   759  	}
   760  }
   761  
   762  func (a *ABISet) Get(abi ABI) bool {
   763  	return (*a>>abi)&1 != 0
   764  }
   765  
   766  func (a ABISet) String() string {
   767  	s := "{"
   768  	for i := ABI(0); a != 0; i++ {
   769  		if a&(1<<i) != 0 {
   770  			if s != "{" {
   771  				s += ","
   772  			}
   773  			s += i.String()
   774  			a &^= 1 << i
   775  		}
   776  	}
   777  	return s + "}"
   778  }
   779  
   780  // Attribute is a set of symbol attributes.
   781  type Attribute uint32
   782  
   783  const (
   784  	AttrDuplicateOK Attribute = 1 << iota
   785  	AttrCFunc
   786  	AttrNoSplit
   787  	AttrLeaf
   788  	AttrWrapper
   789  	AttrNeedCtxt
   790  	AttrNoFrame
   791  	AttrOnList
   792  	AttrStatic
   793  
   794  	// MakeTypelink means that the type should have an entry in the typelink table.
   795  	AttrMakeTypelink
   796  
   797  	// ReflectMethod means the function may call reflect.Type.Method or
   798  	// reflect.Type.MethodByName. Matching is imprecise (as reflect.Type
   799  	// can be used through a custom interface), so ReflectMethod may be
   800  	// set in some cases when the reflect package is not called.
   801  	//
   802  	// Used by the linker to determine what methods can be pruned.
   803  	AttrReflectMethod
   804  
   805  	// Local means make the symbol local even when compiling Go code to reference Go
   806  	// symbols in other shared libraries, as in this mode symbols are global by
   807  	// default. "local" here means in the sense of the dynamic linker, i.e. not
   808  	// visible outside of the module (shared library or executable) that contains its
   809  	// definition. (When not compiling to support Go shared libraries, all symbols are
   810  	// local in this sense unless there is a cgo_export_* directive).
   811  	AttrLocal
   812  
   813  	// For function symbols; indicates that the specified function was the
   814  	// target of an inline during compilation
   815  	AttrWasInlined
   816  
   817  	// Indexed indicates this symbol has been assigned with an index (when using the
   818  	// new object file format).
   819  	AttrIndexed
   820  
   821  	// Only applied on type descriptor symbols, UsedInIface indicates this type is
   822  	// converted to an interface.
   823  	//
   824  	// Used by the linker to determine what methods can be pruned.
   825  	AttrUsedInIface
   826  
   827  	// ContentAddressable indicates this is a content-addressable symbol.
   828  	AttrContentAddressable
   829  
   830  	// ABI wrapper is set for compiler-generated text symbols that
   831  	// convert between ABI0 and ABIInternal calling conventions.
   832  	AttrABIWrapper
   833  
   834  	// IsPcdata indicates this is a pcdata symbol.
   835  	AttrPcdata
   836  
   837  	// PkgInit indicates this is a compiler-generated package init func.
   838  	AttrPkgInit
   839  
   840  	// Linkname indicates this is a go:linkname'd symbol.
   841  	AttrLinkname
   842  
   843  	// attrABIBase is the value at which the ABI is encoded in
   844  	// Attribute. This must be last; all bits after this are
   845  	// assumed to be an ABI value.
   846  	//
   847  	// MUST BE LAST since all bits above this comprise the ABI.
   848  	attrABIBase
   849  )
   850  
   851  func (a *Attribute) load() Attribute { return Attribute(atomic.LoadUint32((*uint32)(a))) }
   852  
   853  func (a *Attribute) DuplicateOK() bool        { return a.load()&AttrDuplicateOK != 0 }
   854  func (a *Attribute) MakeTypelink() bool       { return a.load()&AttrMakeTypelink != 0 }
   855  func (a *Attribute) CFunc() bool              { return a.load()&AttrCFunc != 0 }
   856  func (a *Attribute) NoSplit() bool            { return a.load()&AttrNoSplit != 0 }
   857  func (a *Attribute) Leaf() bool               { return a.load()&AttrLeaf != 0 }
   858  func (a *Attribute) OnList() bool             { return a.load()&AttrOnList != 0 }
   859  func (a *Attribute) ReflectMethod() bool      { return a.load()&AttrReflectMethod != 0 }
   860  func (a *Attribute) Local() bool              { return a.load()&AttrLocal != 0 }
   861  func (a *Attribute) Wrapper() bool            { return a.load()&AttrWrapper != 0 }
   862  func (a *Attribute) NeedCtxt() bool           { return a.load()&AttrNeedCtxt != 0 }
   863  func (a *Attribute) NoFrame() bool            { return a.load()&AttrNoFrame != 0 }
   864  func (a *Attribute) Static() bool             { return a.load()&AttrStatic != 0 }
   865  func (a *Attribute) WasInlined() bool         { return a.load()&AttrWasInlined != 0 }
   866  func (a *Attribute) Indexed() bool            { return a.load()&AttrIndexed != 0 }
   867  func (a *Attribute) UsedInIface() bool        { return a.load()&AttrUsedInIface != 0 }
   868  func (a *Attribute) ContentAddressable() bool { return a.load()&AttrContentAddressable != 0 }
   869  func (a *Attribute) ABIWrapper() bool         { return a.load()&AttrABIWrapper != 0 }
   870  func (a *Attribute) IsPcdata() bool           { return a.load()&AttrPcdata != 0 }
   871  func (a *Attribute) IsPkgInit() bool          { return a.load()&AttrPkgInit != 0 }
   872  func (a *Attribute) IsLinkname() bool         { return a.load()&AttrLinkname != 0 }
   873  
   874  func (a *Attribute) Set(flag Attribute, value bool) {
   875  	for {
   876  		v0 := a.load()
   877  		v := v0
   878  		if value {
   879  			v |= flag
   880  		} else {
   881  			v &^= flag
   882  		}
   883  		if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
   884  			break
   885  		}
   886  	}
   887  }
   888  
   889  func (a *Attribute) ABI() ABI { return ABI(a.load() / attrABIBase) }
   890  func (a *Attribute) SetABI(abi ABI) {
   891  	const mask = 1 // Only one ABI bit for now.
   892  	for {
   893  		v0 := a.load()
   894  		v := (v0 &^ (mask * attrABIBase)) | Attribute(abi)*attrABIBase
   895  		if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
   896  			break
   897  		}
   898  	}
   899  }
   900  
   901  var textAttrStrings = [...]struct {
   902  	bit Attribute
   903  	s   string
   904  }{
   905  	{bit: AttrDuplicateOK, s: "DUPOK"},
   906  	{bit: AttrMakeTypelink, s: ""},
   907  	{bit: AttrCFunc, s: "CFUNC"},
   908  	{bit: AttrNoSplit, s: "NOSPLIT"},
   909  	{bit: AttrLeaf, s: "LEAF"},
   910  	{bit: AttrOnList, s: ""},
   911  	{bit: AttrReflectMethod, s: "REFLECTMETHOD"},
   912  	{bit: AttrLocal, s: "LOCAL"},
   913  	{bit: AttrWrapper, s: "WRAPPER"},
   914  	{bit: AttrNeedCtxt, s: "NEEDCTXT"},
   915  	{bit: AttrNoFrame, s: "NOFRAME"},
   916  	{bit: AttrStatic, s: "STATIC"},
   917  	{bit: AttrWasInlined, s: ""},
   918  	{bit: AttrIndexed, s: ""},
   919  	{bit: AttrContentAddressable, s: ""},
   920  	{bit: AttrABIWrapper, s: "ABIWRAPPER"},
   921  	{bit: AttrPkgInit, s: "PKGINIT"},
   922  	{bit: AttrLinkname, s: "LINKNAME"},
   923  }
   924  
   925  // String formats a for printing in as part of a TEXT prog.
   926  func (a Attribute) String() string {
   927  	var s string
   928  	for _, x := range textAttrStrings {
   929  		if a&x.bit != 0 {
   930  			if x.s != "" {
   931  				s += x.s + "|"
   932  			}
   933  			a &^= x.bit
   934  		}
   935  	}
   936  	switch a.ABI() {
   937  	case ABI0:
   938  	case ABIInternal:
   939  		s += "ABIInternal|"
   940  		a.SetABI(0) // Clear ABI so we don't print below.
   941  	}
   942  	if a != 0 {
   943  		s += fmt.Sprintf("UnknownAttribute(%d)|", a)
   944  	}
   945  	// Chop off trailing |, if present.
   946  	if len(s) > 0 {
   947  		s = s[:len(s)-1]
   948  	}
   949  	return s
   950  }
   951  
   952  // TextAttrString formats the symbol attributes for printing in as part of a TEXT prog.
   953  func (s *LSym) TextAttrString() string {
   954  	attr := s.Attribute.String()
   955  	if s.Func().FuncFlag&abi.FuncFlagTopFrame != 0 {
   956  		if attr != "" {
   957  			attr += "|"
   958  		}
   959  		attr += "TOPFRAME"
   960  	}
   961  	return attr
   962  }
   963  
   964  func (s *LSym) String() string {
   965  	return s.Name
   966  }
   967  
   968  // The compiler needs *LSym to be assignable to cmd/compile/internal/ssa.Sym.
   969  func (*LSym) CanBeAnSSASym() {}
   970  func (*LSym) CanBeAnSSAAux() {}
   971  
   972  type Pcln struct {
   973  	// Aux symbols for pcln
   974  	Pcsp      *LSym
   975  	Pcfile    *LSym
   976  	Pcline    *LSym
   977  	Pcinline  *LSym
   978  	Pcdata    []*LSym
   979  	Funcdata  []*LSym
   980  	UsedFiles map[goobj.CUFileIndex]struct{} // file indices used while generating pcfile
   981  	InlTree   InlTree                        // per-function inlining tree extracted from the global tree
   982  }
   983  
   984  type Reloc struct {
   985  	Off  int32
   986  	Siz  uint8
   987  	Type objabi.RelocType
   988  	Add  int64
   989  	Sym  *LSym
   990  }
   991  
   992  type Auto struct {
   993  	Asym    *LSym
   994  	Aoffset int32
   995  	Name    AddrName
   996  	Gotype  *LSym
   997  }
   998  
   999  // RegSpill provides spill/fill information for a register-resident argument
  1000  // to a function.  These need spilling/filling in the safepoint/stackgrowth case.
  1001  // At the time of fill/spill, the offset must be adjusted by the architecture-dependent
  1002  // adjustment to hardware SP that occurs in a call instruction.  E.g., for AMD64,
  1003  // at Offset+8 because the return address was pushed.
  1004  type RegSpill struct {
  1005  	Addr           Addr
  1006  	Reg            int16
  1007  	Spill, Unspill As
  1008  }
  1009  
  1010  // A Func represents a Go function. If non-nil, it must be a *ir.Func.
  1011  type Func interface {
  1012  	Pos() src.XPos
  1013  }
  1014  
  1015  // Link holds the context for writing object code from a compiler
  1016  // to be linker input or for reading that input into the linker.
  1017  type Link struct {
  1018  	Headtype           objabi.HeadType
  1019  	Arch               *LinkArch
  1020  	Debugasm           int
  1021  	Debugvlog          bool
  1022  	Debugpcln          string
  1023  	Flag_shared        bool
  1024  	Flag_dynlink       bool
  1025  	Flag_linkshared    bool
  1026  	Flag_optimize      bool
  1027  	Flag_locationlists bool
  1028  	Flag_noRefName     bool   // do not include referenced symbol names in object file
  1029  	Retpoline          bool   // emit use of retpoline stubs for indirect jmp/call
  1030  	Flag_maymorestack  string // If not "", call this function before stack checks
  1031  	Bso                *bufio.Writer
  1032  	Pathname           string
  1033  	Pkgpath            string           // the current package's import path
  1034  	hashmu             sync.Mutex       // protects hash, funchash
  1035  	hash               map[string]*LSym // name -> sym mapping
  1036  	funchash           map[string]*LSym // name -> sym mapping for ABIInternal syms
  1037  	statichash         map[string]*LSym // name -> sym mapping for static syms
  1038  	PosTable           src.PosTable
  1039  	InlTree            InlTree // global inlining tree used by gc/inl.go
  1040  	DwFixups           *DwarfFixupTable
  1041  	Imports            []goobj.ImportedPkg
  1042  	DiagFunc           func(string, ...interface{})
  1043  	DiagFlush          func()
  1044  	DebugInfo          func(fn *LSym, info *LSym, curfn Func) ([]dwarf.Scope, dwarf.InlCalls)
  1045  	GenAbstractFunc    func(fn *LSym)
  1046  	Errors             int
  1047  
  1048  	InParallel    bool // parallel backend phase in effect
  1049  	UseBASEntries bool // use Base Address Selection Entries in location lists and PC ranges
  1050  	IsAsm         bool // is the source assembly language, which may contain surprising idioms (e.g., call tables)
  1051  	Std           bool // is standard library package
  1052  
  1053  	// state for writing objects
  1054  	Text []*LSym
  1055  	Data []*LSym
  1056  
  1057  	// Constant symbols (e.g. $i64.*) are data symbols created late
  1058  	// in the concurrent phase. To ensure a deterministic order, we
  1059  	// add them to a separate list, sort at the end, and append it
  1060  	// to Data.
  1061  	constSyms []*LSym
  1062  
  1063  	// Windows SEH symbols are also data symbols that can be created
  1064  	// concurrently.
  1065  	SEHSyms []*LSym
  1066  
  1067  	// pkgIdx maps package path to index. The index is used for
  1068  	// symbol reference in the object file.
  1069  	pkgIdx map[string]int32
  1070  
  1071  	defs         []*LSym // list of defined symbols in the current package
  1072  	hashed64defs []*LSym // list of defined short (64-bit or less) hashed (content-addressable) symbols
  1073  	hasheddefs   []*LSym // list of defined hashed (content-addressable) symbols
  1074  	nonpkgdefs   []*LSym // list of defined non-package symbols
  1075  	nonpkgrefs   []*LSym // list of referenced non-package symbols
  1076  
  1077  	Fingerprint goobj.FingerprintType // fingerprint of symbol indices, to catch index mismatch
  1078  }
  1079  
  1080  func (ctxt *Link) Diag(format string, args ...interface{}) {
  1081  	ctxt.Errors++
  1082  	ctxt.DiagFunc(format, args...)
  1083  }
  1084  
  1085  func (ctxt *Link) Logf(format string, args ...interface{}) {
  1086  	fmt.Fprintf(ctxt.Bso, format, args...)
  1087  	ctxt.Bso.Flush()
  1088  }
  1089  
  1090  // SpillRegisterArgs emits the code to spill register args into whatever
  1091  // locations the spill records specify.
  1092  func (fi *FuncInfo) SpillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
  1093  	// Spill register args.
  1094  	for _, ra := range fi.spills {
  1095  		spill := Appendp(last, pa)
  1096  		spill.As = ra.Spill
  1097  		spill.From.Type = TYPE_REG
  1098  		spill.From.Reg = ra.Reg
  1099  		spill.To = ra.Addr
  1100  		last = spill
  1101  	}
  1102  	return last
  1103  }
  1104  
  1105  // UnspillRegisterArgs emits the code to restore register args from whatever
  1106  // locations the spill records specify.
  1107  func (fi *FuncInfo) UnspillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
  1108  	// Unspill any spilled register args
  1109  	for _, ra := range fi.spills {
  1110  		unspill := Appendp(last, pa)
  1111  		unspill.As = ra.Unspill
  1112  		unspill.From = ra.Addr
  1113  		unspill.To.Type = TYPE_REG
  1114  		unspill.To.Reg = ra.Reg
  1115  		last = unspill
  1116  	}
  1117  	return last
  1118  }
  1119  
  1120  // LinkArch is the definition of a single architecture.
  1121  type LinkArch struct {
  1122  	*sys.Arch
  1123  	Init           func(*Link)
  1124  	ErrorCheck     func(*Link, *LSym)
  1125  	Preprocess     func(*Link, *LSym, ProgAlloc)
  1126  	Assemble       func(*Link, *LSym, ProgAlloc)
  1127  	Progedit       func(*Link, *Prog, ProgAlloc)
  1128  	SEH            func(*Link, *LSym) *LSym
  1129  	UnaryDst       map[As]bool // Instruction takes one operand, a destination.
  1130  	DWARFRegisters map[int16]int16
  1131  }
  1132  

View as plain text