// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "fmt" "go/ast" "go/token" . "internal/types/errors" ) // ---------------------------------------------------------------------------- // API // A Signature represents a (non-builtin) function or method type. // The receiver is ignored when comparing signatures for identity. type Signature struct { // We need to keep the scope in Signature (rather than passing it around // and store it in the Func Object) because when type-checking a function // literal we call the general type checker which returns a general Type. // We then unpack the *Signature and use the scope for the literal body. rparams *TypeParamList // receiver type parameters from left to right, or nil tparams *TypeParamList // type parameters from left to right, or nil scope *Scope // function scope for package-local and non-instantiated signatures; nil otherwise recv *Var // nil if not a method params *Tuple // (incoming) parameters from left to right; or nil results *Tuple // (outgoing) results from left to right; or nil variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only) } // NewSignature returns a new function type for the given receiver, parameters, // and results, either of which may be nil. If variadic is set, the function // is variadic, it must have at least one parameter, and the last parameter // must be of unnamed slice type. // // Deprecated: Use [NewSignatureType] instead which allows for type parameters. func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature { return NewSignatureType(recv, nil, nil, params, results, variadic) } // NewSignatureType creates a new function type for the given receiver, // receiver type parameters, type parameters, parameters, and results. If // variadic is set, params must hold at least one parameter and the last // parameter's core type must be of unnamed slice or bytestring type. // If recv is non-nil, typeParams must be empty. If recvTypeParams is // non-empty, recv must be non-nil. func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature { if variadic { n := params.Len() if n == 0 { panic("variadic function must have at least one parameter") } core := coreString(params.At(n - 1).typ) if _, ok := core.(*Slice); !ok && !isString(core) { panic(fmt.Sprintf("got %s, want variadic parameter with unnamed slice type or string as core type", core.String())) } } sig := &Signature{recv: recv, params: params, results: results, variadic: variadic} if len(recvTypeParams) != 0 { if recv == nil { panic("function with receiver type parameters must have a receiver") } sig.rparams = bindTParams(recvTypeParams) } if len(typeParams) != 0 { if recv != nil { panic("function with type parameters cannot have a receiver") } sig.tparams = bindTParams(typeParams) } return sig } // Recv returns the receiver of signature s (if a method), or nil if a // function. It is ignored when comparing signatures for identity. // // For an abstract method, Recv returns the enclosing interface either // as a *[Named] or an *[Interface]. Due to embedding, an interface may // contain methods whose receiver type is a different interface. func (s *Signature) Recv() *Var { return s.recv } // TypeParams returns the type parameters of signature s, or nil. func (s *Signature) TypeParams() *TypeParamList { return s.tparams } // RecvTypeParams returns the receiver type parameters of signature s, or nil. func (s *Signature) RecvTypeParams() *TypeParamList { return s.rparams } // Params returns the parameters of signature s, or nil. func (s *Signature) Params() *Tuple { return s.params } // Results returns the results of signature s, or nil. func (s *Signature) Results() *Tuple { return s.results } // Variadic reports whether the signature s is variadic. func (s *Signature) Variadic() bool { return s.variadic } func (t *Signature) Underlying() Type { return t } func (t *Signature) String() string { return TypeString(t, nil) } // ---------------------------------------------------------------------------- // Implementation // funcType type-checks a function or method type. func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) { check.openScope(ftyp, "function") check.scope.isFunc = true check.recordScope(ftyp, check.scope) sig.scope = check.scope defer check.closeScope() if recvPar != nil && len(recvPar.List) > 0 { // collect generic receiver type parameters, if any // - a receiver type parameter is like any other type parameter, except that it is declared implicitly // - the receiver specification acts as local declaration for its type parameters, which may be blank _, rname, rparams := check.unpackRecv(recvPar.List[0].Type, true) if len(rparams) > 0 { // The scope of the type parameter T in "func (r T[T]) f()" // starts after f, not at "r"; see #52038. scopePos := ftyp.Params.Pos() tparams := check.declareTypeParams(nil, rparams, scopePos) sig.rparams = bindTParams(tparams) // Blank identifiers don't get declared, so naive type-checking of the // receiver type expression would fail in Checker.collectParams below, // when Checker.ident cannot resolve the _ to a type. // // Checker.recvTParamMap maps these blank identifiers to their type parameter // types, so that they may be resolved in Checker.ident when they fail // lookup in the scope. for i, p := range rparams { if p.Name == "_" { if check.recvTParamMap == nil { check.recvTParamMap = make(map[*ast.Ident]*TypeParam) } check.recvTParamMap[p] = tparams[i] } } // determine receiver type to get its type parameters // and the respective type parameter bounds var recvTParams []*TypeParam if rname != nil { // recv should be a Named type (otherwise an error is reported elsewhere) // Also: Don't report an error via genericType since it will be reported // again when we type-check the signature. // TODO(gri) maybe the receiver should be marked as invalid instead? if recv := asNamed(check.genericType(rname, nil)); recv != nil { recvTParams = recv.TypeParams().list() } } // provide type parameter bounds if len(tparams) == len(recvTParams) { smap := makeRenameMap(recvTParams, tparams) for i, tpar := range tparams { recvTPar := recvTParams[i] check.mono.recordCanon(tpar, recvTPar) // recvTPar.bound is (possibly) parameterized in the context of the // receiver type declaration. Substitute parameters for the current // context. tpar.bound = check.subst(tpar.obj.pos, recvTPar.bound, smap, nil, check.context()) } } else if len(tparams) < len(recvTParams) { // Reporting an error here is a stop-gap measure to avoid crashes in the // compiler when a type parameter/argument cannot be inferred later. It // may lead to follow-on errors (see issues go.dev/issue/51339, go.dev/issue/51343). // TODO(gri) find a better solution got := measure(len(tparams), "type parameter") check.errorf(recvPar, BadRecv, "got %s, but receiver base type declares %d", got, len(recvTParams)) } } } if ftyp.TypeParams != nil { check.collectTypeParams(&sig.tparams, ftyp.TypeParams) // Always type-check method type parameters but complain that they are not allowed. // (A separate check is needed when type-checking interface method signatures because // they don't have a receiver specification.) if recvPar != nil { check.error(ftyp.TypeParams, InvalidMethodTypeParams, "methods cannot have type parameters") } } // Use a temporary scope for all parameter declarations and then // squash that scope into the parent scope (and report any // redeclarations at that time). // // TODO(adonovan): now that each declaration has the correct // scopePos, there should be no need for scope squashing. // Audit to ensure all lookups honor scopePos and simplify. scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)") scopePos := ftyp.End() // all parameters' scopes start after the signature recvList, _ := check.collectParams(scope, recvPar, false, scopePos) params, variadic := check.collectParams(scope, ftyp.Params, true, scopePos) results, _ := check.collectParams(scope, ftyp.Results, false, scopePos) scope.squash(func(obj, alt Object) { check.errorf(obj, DuplicateDecl, "%s redeclared in this block", obj.Name()) check.reportAltDecl(alt) }) if recvPar != nil { // recv parameter list present (may be empty) // spec: "The receiver is specified via an extra parameter section preceding the // method name. That parameter section must declare a single parameter, the receiver." var recv *Var switch len(recvList) { case 0: // error reported by resolver recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below default: // more than one receiver check.error(recvList[len(recvList)-1], InvalidRecv, "method has multiple receivers") fallthrough // continue with first receiver case 1: recv = recvList[0] } sig.recv = recv // Delay validation of receiver type as it may cause premature expansion // of types the receiver type is dependent on (see issues go.dev/issue/51232, go.dev/issue/51233). check.later(func() { // spec: "The receiver type must be of the form T or *T where T is a type name." rtyp, _ := deref(recv.typ) atyp := Unalias(rtyp) if !isValid(atyp) { return // error was reported before } // spec: "The type denoted by T is called the receiver base type; it must not // be a pointer or interface type and it must be declared in the same package // as the method." switch T := atyp.(type) { case *Named: // The receiver type may be an instantiated type referred to // by an alias (which cannot have receiver parameters for now). if T.TypeArgs() != nil && sig.RecvTypeParams() == nil { check.errorf(recv, InvalidRecv, "cannot define new methods on instantiated type %s", rtyp) break } if T.obj.pkg != check.pkg { check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp) break } var cause string switch u := T.under().(type) { case *Basic: // unsafe.Pointer is treated like a regular pointer if u.kind == UnsafePointer { cause = "unsafe.Pointer" } case *Pointer, *Interface: cause = "pointer or interface type" case *TypeParam: // The underlying type of a receiver base type cannot be a // type parameter: "type T[P any] P" is not a valid declaration. unreachable() } if cause != "" { check.errorf(recv, InvalidRecv, "invalid receiver type %s (%s)", rtyp, cause) } case *Basic: check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp) default: check.errorf(recv, InvalidRecv, "invalid receiver type %s", recv.typ) } }).describef(recv, "validate receiver %s", recv) } sig.params = NewTuple(params...) sig.results = NewTuple(results...) sig.variadic = variadic } // collectParams declares the parameters of list in scope and returns the corresponding // variable list. func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, variadicOk bool, scopePos token.Pos) (params []*Var, variadic bool) { if list == nil { return } var named, anonymous bool for i, field := range list.List { ftype := field.Type if t, _ := ftype.(*ast.Ellipsis); t != nil { ftype = t.Elt if variadicOk && i == len(list.List)-1 && len(field.Names) <= 1 { variadic = true } else { check.softErrorf(t, MisplacedDotDotDot, "can only use ... with final parameter in list") // ignore ... and continue } } typ := check.varType(ftype) // The parser ensures that f.Tag is nil and we don't // care if a constructed AST contains a non-nil tag. if len(field.Names) > 0 { // named parameter for _, name := range field.Names { if name.Name == "" { check.error(name, InvalidSyntaxTree, "anonymous parameter") // ok to continue } par := NewParam(name.Pos(), check.pkg, name.Name, typ) check.declare(scope, name, par, scopePos) params = append(params, par) } named = true } else { // anonymous parameter par := NewParam(ftype.Pos(), check.pkg, "", typ) check.recordImplicit(field, par) params = append(params, par) anonymous = true } } if named && anonymous { check.error(list, InvalidSyntaxTree, "list contains both named and anonymous parameters") // ok to continue } // For a variadic function, change the last parameter's type from T to []T. // Since we type-checked T rather than ...T, we also need to retro-actively // record the type for ...T. if variadic { last := params[len(params)-1] last.typ = &Slice{elem: last.typ} check.recordTypeAndValue(list.List[len(list.List)-1].Type, typexpr, last.typ, nil) } return }