// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT. // Copyright 2020 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements type unification. // // Type unification attempts to make two types x and y structurally // equivalent by determining the types for a given list of (bound) // type parameters which may occur within x and y. If x and y are // structurally different (say []T vs chan T), or conflicting // types are determined for type parameters, unification fails. // If unification succeeds, as a side-effect, the types of the // bound type parameters may be determined. // // Unification typically requires multiple calls u.unify(x, y) to // a given unifier u, with various combinations of types x and y. // In each call, additional type parameter types may be determined // as a side effect and recorded in u. // If a call fails (returns false), unification fails. // // In the unification context, structural equivalence of two types // ignores the difference between a defined type and its underlying // type if one type is a defined type and the other one is not. // It also ignores the difference between an (external, unbound) // type parameter and its core type. // If two types are not structurally equivalent, they cannot be Go // identical types. On the other hand, if they are structurally // equivalent, they may be Go identical or at least assignable, or // they may be in the type set of a constraint. // Whether they indeed are identical or assignable is determined // upon instantiation and function argument passing. package types import ( "bytes" "fmt" "sort" "strings" ) const ( // Upper limit for recursion depth. Used to catch infinite recursions // due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656). unificationDepthLimit = 50 // Whether to panic when unificationDepthLimit is reached. // If disabled, a recursion depth overflow results in a (quiet) // unification failure. panicAtUnificationDepthLimit = true // If enableCoreTypeUnification is set, unification will consider // the core types, if any, of non-local (unbound) type parameters. enableCoreTypeUnification = true // If traceInference is set, unification will print a trace of its operation. // Interpretation of trace: // x ≡ y attempt to unify types x and y // p ➞ y type parameter p is set to type y (p is inferred to be y) // p ⇄ q type parameters p and q match (p is inferred to be q and vice versa) // x ≢ y types x and y cannot be unified // [p, q, ...] ➞ [x, y, ...] mapping from type parameters to types traceInference = false ) // A unifier maintains a list of type parameters and // corresponding types inferred for each type parameter. // A unifier is created by calling newUnifier. type unifier struct { // handles maps each type parameter to its inferred type through // an indirection *Type called (inferred type) "handle". // Initially, each type parameter has its own, separate handle, // with a nil (i.e., not yet inferred) type. // After a type parameter P is unified with a type parameter Q, // P and Q share the same handle (and thus type). This ensures // that inferring the type for a given type parameter P will // automatically infer the same type for all other parameters // unified (joined) with P. handles map[*TypeParam]*Type depth int // recursion depth during unification enableInterfaceInference bool // use shared methods for better inference } // newUnifier returns a new unifier initialized with the given type parameter // and corresponding type argument lists. The type argument list may be shorter // than the type parameter list, and it may contain nil types. Matching type // parameters and arguments must have the same index. func newUnifier(tparams []*TypeParam, targs []Type, enableInterfaceInference bool) *unifier { assert(len(tparams) >= len(targs)) handles := make(map[*TypeParam]*Type, len(tparams)) // Allocate all handles up-front: in a correct program, all type parameters // must be resolved and thus eventually will get a handle. // Also, sharing of handles caused by unified type parameters is rare and // so it's ok to not optimize for that case (and delay handle allocation). for i, x := range tparams { var t Type if i < len(targs) { t = targs[i] } handles[x] = &t } return &unifier{handles, 0, enableInterfaceInference} } // unifyMode controls the behavior of the unifier. type unifyMode uint const ( // If assign is set, we are unifying types involved in an assignment: // they may match inexactly at the top, but element types must match // exactly. assign unifyMode = 1 << iota // If exact is set, types unify if they are identical (or can be // made identical with suitable arguments for type parameters). // Otherwise, a named type and a type literal unify if their // underlying types unify, channel directions are ignored, and // if there is an interface, the other type must implement the // interface. exact ) func (m unifyMode) String() string { switch m { case 0: return "inexact" case assign: return "assign" case exact: return "exact" case assign | exact: return "assign, exact" } return fmt.Sprintf("mode %d", m) } // unify attempts to unify x and y and reports whether it succeeded. // As a side-effect, types may be inferred for type parameters. // The mode parameter controls how types are compared. func (u *unifier) unify(x, y Type, mode unifyMode) bool { return u.nify(x, y, mode, nil) } func (u *unifier) tracef(format string, args ...interface{}) { fmt.Println(strings.Repeat(". ", u.depth) + sprintf(nil, nil, true, format, args...)) } // String returns a string representation of the current mapping // from type parameters to types. func (u *unifier) String() string { // sort type parameters for reproducible strings tparams := make(typeParamsById, len(u.handles)) i := 0 for tpar := range u.handles { tparams[i] = tpar i++ } sort.Sort(tparams) var buf bytes.Buffer w := newTypeWriter(&buf, nil) w.byte('[') for i, x := range tparams { if i > 0 { w.string(", ") } w.typ(x) w.string(": ") w.typ(u.at(x)) } w.byte(']') return buf.String() } type typeParamsById []*TypeParam func (s typeParamsById) Len() int { return len(s) } func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id } func (s typeParamsById) Swap(i, j int) { s[i], s[j] = s[j], s[i] } // join unifies the given type parameters x and y. // If both type parameters already have a type associated with them // and they are not joined, join fails and returns false. func (u *unifier) join(x, y *TypeParam) bool { if traceInference { u.tracef("%s ⇄ %s", x, y) } switch hx, hy := u.handles[x], u.handles[y]; { case hx == hy: // Both type parameters already share the same handle. Nothing to do. case *hx != nil && *hy != nil: // Both type parameters have (possibly different) inferred types. Cannot join. return false case *hx != nil: // Only type parameter x has an inferred type. Use handle of x. u.setHandle(y, hx) // This case is treated like the default case. // case *hy != nil: // // Only type parameter y has an inferred type. Use handle of y. // u.setHandle(x, hy) default: // Neither type parameter has an inferred type. Use handle of y. u.setHandle(x, hy) } return true } // asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u. // Otherwise, the result is nil. func (u *unifier) asTypeParam(x Type) *TypeParam { if x, _ := x.(*TypeParam); x != nil { if _, found := u.handles[x]; found { return x } } return nil } // setHandle sets the handle for type parameter x // (and all its joined type parameters) to h. func (u *unifier) setHandle(x *TypeParam, h *Type) { hx := u.handles[x] assert(hx != nil) for y, hy := range u.handles { if hy == hx { u.handles[y] = h } } } // at returns the (possibly nil) type for type parameter x. func (u *unifier) at(x *TypeParam) Type { return *u.handles[x] } // set sets the type t for type parameter x; // t must not be nil. func (u *unifier) set(x *TypeParam, t Type) { assert(t != nil) if traceInference { u.tracef("%s ➞ %s", x, t) } *u.handles[x] = t } // unknowns returns the number of type parameters for which no type has been set yet. func (u *unifier) unknowns() int { n := 0 for _, h := range u.handles { if *h == nil { n++ } } return n } // inferred returns the list of inferred types for the given type parameter list. // The result is never nil and has the same length as tparams; result types that // could not be inferred are nil. Corresponding type parameters and result types // have identical indices. func (u *unifier) inferred(tparams []*TypeParam) []Type { list := make([]Type, len(tparams)) for i, x := range tparams { list[i] = u.at(x) } return list } // asInterface returns the underlying type of x as an interface if // it is a non-type parameter interface. Otherwise it returns nil. func asInterface(x Type) (i *Interface) { if _, ok := x.(*TypeParam); !ok { i, _ = under(x).(*Interface) } return i } // nify implements the core unification algorithm which is an // adapted version of Checker.identical. For changes to that // code the corresponding changes should be made here. // Must not be called directly from outside the unifier. func (u *unifier) nify(x, y Type, mode unifyMode, p *ifacePair) (result bool) { u.depth++ if traceInference { u.tracef("%s ≡ %s\t// %s", x, y, mode) } defer func() { if traceInference && !result { u.tracef("%s ≢ %s", x, y) } u.depth-- }() x = Unalias(x) y = Unalias(y) // nothing to do if x == y if x == y { return true } // Stop gap for cases where unification fails. if u.depth > unificationDepthLimit { if traceInference { u.tracef("depth %d >= %d", u.depth, unificationDepthLimit) } if panicAtUnificationDepthLimit { panic("unification reached recursion depth limit") } return false } // Unification is symmetric, so we can swap the operands. // Ensure that if we have at least one // - defined type, make sure one is in y // - type parameter recorded with u, make sure one is in x if asNamed(x) != nil || u.asTypeParam(y) != nil { if traceInference { u.tracef("%s ≡ %s\t// swap", y, x) } x, y = y, x } // Unification will fail if we match a defined type against a type literal. // If we are matching types in an assignment, at the top-level, types with // the same type structure are permitted as long as at least one of them // is not a defined type. To accommodate for that possibility, we continue // unification with the underlying type of a defined type if the other type // is a type literal. This is controlled by the exact unification mode. // We also continue if the other type is a basic type because basic types // are valid underlying types and may appear as core types of type constraints. // If we exclude them, inferred defined types for type parameters may not // match against the core types of their constraints (even though they might // correctly match against some of the types in the constraint's type set). // Finally, if unification (incorrectly) succeeds by matching the underlying // type of a defined type against a basic type (because we include basic types // as type literals here), and if that leads to an incorrectly inferred type, // we will fail at function instantiation or argument assignment time. // // If we have at least one defined type, there is one in y. if ny := asNamed(y); mode&exact == 0 && ny != nil && isTypeLit(x) && !(u.enableInterfaceInference && IsInterface(x)) { if traceInference { u.tracef("%s ≡ under %s", x, ny) } y = ny.under() // Per the spec, a defined type cannot have an underlying type // that is a type parameter. assert(!isTypeParam(y)) // x and y may be identical now if x == y { return true } } // Cases where at least one of x or y is a type parameter recorded with u. // If we have at least one type parameter, there is one in x. // If we have exactly one type parameter, because it is in x, // isTypeLit(x) is false and y was not changed above. In other // words, if y was a defined type, it is still a defined type // (relevant for the logic below). switch px, py := u.asTypeParam(x), u.asTypeParam(y); { case px != nil && py != nil: // both x and y are type parameters if u.join(px, py) { return true } // both x and y have an inferred type - they must match return u.nify(u.at(px), u.at(py), mode, p) case px != nil: // x is a type parameter, y is not if x := u.at(px); x != nil { // x has an inferred type which must match y if u.nify(x, y, mode, p) { // We have a match, possibly through underlying types. xi := asInterface(x) yi := asInterface(y) xn := asNamed(x) != nil yn := asNamed(y) != nil // If we have two interfaces, what to do depends on // whether they are named and their method sets. if xi != nil && yi != nil { // Both types are interfaces. // If both types are defined types, they must be identical // because unification doesn't know which type has the "right" name. if xn && yn { return Identical(x, y) } // In all other cases, the method sets must match. // The types unified so we know that corresponding methods // match and we can simply compare the number of methods. // TODO(gri) We may be able to relax this rule and select // the more general interface. But if one of them is a defined // type, it's not clear how to choose and whether we introduce // an order dependency or not. Requiring the same method set // is conservative. if len(xi.typeSet().methods) != len(yi.typeSet().methods) { return false } } else if xi != nil || yi != nil { // One but not both of them are interfaces. // In this case, either x or y could be viable matches for the corresponding // type parameter, which means choosing either introduces an order dependence. // Therefore, we must fail unification (go.dev/issue/60933). return false } // If we have inexact unification and one of x or y is a defined type, select the // defined type. This ensures that in a series of types, all matching against the // same type parameter, we infer a defined type if there is one, independent of // order. Type inference or assignment may fail, which is ok. // Selecting a defined type, if any, ensures that we don't lose the type name; // and since we have inexact unification, a value of equally named or matching // undefined type remains assignable (go.dev/issue/43056). // // Similarly, if we have inexact unification and there are no defined types but // channel types, select a directed channel, if any. This ensures that in a series // of unnamed types, all matching against the same type parameter, we infer the // directed channel if there is one, independent of order. // Selecting a directional channel, if any, ensures that a value of another // inexactly unifying channel type remains assignable (go.dev/issue/62157). // // If we have multiple defined channel types, they are either identical or we // have assignment conflicts, so we can ignore directionality in this case. // // If we have defined and literal channel types, a defined type wins to avoid // order dependencies. if mode&exact == 0 { switch { case xn: // x is a defined type: nothing to do. case yn: // x is not a defined type and y is a defined type: select y. u.set(px, y) default: // Neither x nor y are defined types. if yc, _ := under(y).(*Chan); yc != nil && yc.dir != SendRecv { // y is a directed channel type: select y. u.set(px, y) } } } return true } return false } // otherwise, infer type from y u.set(px, y) return true } // x != y if we get here assert(x != y) // If u.EnableInterfaceInference is set and we don't require exact unification, // if both types are interfaces, one interface must have a subset of the // methods of the other and corresponding method signatures must unify. // If only one type is an interface, all its methods must be present in the // other type and corresponding method signatures must unify. if u.enableInterfaceInference && mode&exact == 0 { // One or both interfaces may be defined types. // Look under the name, but not under type parameters (go.dev/issue/60564). xi := asInterface(x) yi := asInterface(y) // If we have two interfaces, check the type terms for equivalence, // and unify common methods if possible. if xi != nil && yi != nil { xset := xi.typeSet() yset := yi.typeSet() if xset.comparable != yset.comparable { return false } // For now we require terms to be equal. // We should be able to relax this as well, eventually. if !xset.terms.equal(yset.terms) { return false } // Interface types are the only types where cycles can occur // that are not "terminated" via named types; and such cycles // can only be created via method parameter types that are // anonymous interfaces (directly or indirectly) embedding // the current interface. Example: // // type T interface { // m() interface{T} // } // // If two such (differently named) interfaces are compared, // endless recursion occurs if the cycle is not detected. // // If x and y were compared before, they must be equal // (if they were not, the recursion would have stopped); // search the ifacePair stack for the same pair. // // This is a quadratic algorithm, but in practice these stacks // are extremely short (bounded by the nesting depth of interface // type declarations that recur via parameter types, an extremely // rare occurrence). An alternative implementation might use a // "visited" map, but that is probably less efficient overall. q := &ifacePair{xi, yi, p} for p != nil { if p.identical(q) { return true // same pair was compared before } p = p.prev } // The method set of x must be a subset of the method set // of y or vice versa, and the common methods must unify. xmethods := xset.methods ymethods := yset.methods // The smaller method set must be the subset, if it exists. if len(xmethods) > len(ymethods) { xmethods, ymethods = ymethods, xmethods } // len(xmethods) <= len(ymethods) // Collect the ymethods in a map for quick lookup. ymap := make(map[string]*Func, len(ymethods)) for _, ym := range ymethods { ymap[ym.Id()] = ym } // All xmethods must exist in ymethods and corresponding signatures must unify. for _, xm := range xmethods { if ym := ymap[xm.Id()]; ym == nil || !u.nify(xm.typ, ym.typ, exact, p) { return false } } return true } // We don't have two interfaces. If we have one, make sure it's in xi. if yi != nil { xi = yi y = x } // If we have one interface, at a minimum each of the interface methods // must be implemented and thus unify with a corresponding method from // the non-interface type, otherwise unification fails. if xi != nil { // All xi methods must exist in y and corresponding signatures must unify. xmethods := xi.typeSet().methods for _, xm := range xmethods { obj, _, _ := LookupFieldOrMethod(y, false, xm.pkg, xm.name) if ym, _ := obj.(*Func); ym == nil || !u.nify(xm.typ, ym.typ, exact, p) { return false } } return true } } // Unless we have exact unification, neither x nor y are interfaces now. // Except for unbound type parameters (see below), x and y must be structurally // equivalent to unify. // If we get here and x or y is a type parameter, they are unbound // (not recorded with the unifier). // Ensure that if we have at least one type parameter, it is in x // (the earlier swap checks for _recorded_ type parameters only). // This ensures that the switch switches on the type parameter. // // TODO(gri) Factor out type parameter handling from the switch. if isTypeParam(y) { if traceInference { u.tracef("%s ≡ %s\t// swap", y, x) } x, y = y, x } // Type elements (array, slice, etc. elements) use emode for unification. // Element types must match exactly if the types are used in an assignment. emode := mode if mode&assign != 0 { emode |= exact } switch x := x.(type) { case *Basic: // Basic types are singletons except for the rune and byte // aliases, thus we cannot solely rely on the x == y check // above. See also comment in TypeName.IsAlias. if y, ok := y.(*Basic); ok { return x.kind == y.kind } case *Array: // Two array types unify if they have the same array length // and their element types unify. if y, ok := y.(*Array); ok { // If one or both array lengths are unknown (< 0) due to some error, // assume they are the same to avoid spurious follow-on errors. return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, emode, p) } case *Slice: // Two slice types unify if their element types unify. if y, ok := y.(*Slice); ok { return u.nify(x.elem, y.elem, emode, p) } case *Struct: // Two struct types unify if they have the same sequence of fields, // and if corresponding fields have the same names, their (field) types unify, // and they have identical tags. Two embedded fields are considered to have the same // name. Lower-case field names from different packages are always different. if y, ok := y.(*Struct); ok { if x.NumFields() == y.NumFields() { for i, f := range x.fields { g := y.fields[i] if f.embedded != g.embedded || x.Tag(i) != y.Tag(i) || !f.sameId(g.pkg, g.name) || !u.nify(f.typ, g.typ, emode, p) { return false } } return true } } case *Pointer: // Two pointer types unify if their base types unify. if y, ok := y.(*Pointer); ok { return u.nify(x.base, y.base, emode, p) } case *Tuple: // Two tuples types unify if they have the same number of elements // and the types of corresponding elements unify. if y, ok := y.(*Tuple); ok { if x.Len() == y.Len() { if x != nil { for i, v := range x.vars { w := y.vars[i] if !u.nify(v.typ, w.typ, mode, p) { return false } } } return true } } case *Signature: // Two function types unify if they have the same number of parameters // and result values, corresponding parameter and result types unify, // and either both functions are variadic or neither is. // Parameter and result names are not required to match. // TODO(gri) handle type parameters or document why we can ignore them. if y, ok := y.(*Signature); ok { return x.variadic == y.variadic && u.nify(x.params, y.params, emode, p) && u.nify(x.results, y.results, emode, p) } case *Interface: assert(!u.enableInterfaceInference || mode&exact != 0) // handled before this switch // Two interface types unify if they have the same set of methods with // the same names, and corresponding function types unify. // Lower-case method names from different packages are always different. // The order of the methods is irrelevant. if y, ok := y.(*Interface); ok { xset := x.typeSet() yset := y.typeSet() if xset.comparable != yset.comparable { return false } if !xset.terms.equal(yset.terms) { return false } a := xset.methods b := yset.methods if len(a) == len(b) { // Interface types are the only types where cycles can occur // that are not "terminated" via named types; and such cycles // can only be created via method parameter types that are // anonymous interfaces (directly or indirectly) embedding // the current interface. Example: // // type T interface { // m() interface{T} // } // // If two such (differently named) interfaces are compared, // endless recursion occurs if the cycle is not detected. // // If x and y were compared before, they must be equal // (if they were not, the recursion would have stopped); // search the ifacePair stack for the same pair. // // This is a quadratic algorithm, but in practice these stacks // are extremely short (bounded by the nesting depth of interface // type declarations that recur via parameter types, an extremely // rare occurrence). An alternative implementation might use a // "visited" map, but that is probably less efficient overall. q := &ifacePair{x, y, p} for p != nil { if p.identical(q) { return true // same pair was compared before } p = p.prev } if debug { assertSortedMethods(a) assertSortedMethods(b) } for i, f := range a { g := b[i] if f.Id() != g.Id() || !u.nify(f.typ, g.typ, exact, q) { return false } } return true } } case *Map: // Two map types unify if their key and value types unify. if y, ok := y.(*Map); ok { return u.nify(x.key, y.key, emode, p) && u.nify(x.elem, y.elem, emode, p) } case *Chan: // Two channel types unify if their value types unify // and if they have the same direction. // The channel direction is ignored for inexact unification. if y, ok := y.(*Chan); ok { return (mode&exact == 0 || x.dir == y.dir) && u.nify(x.elem, y.elem, emode, p) } case *Named: // Two named types unify if their type names originate in the same type declaration. // If they are instantiated, their type argument lists must unify. if y := asNamed(y); y != nil { // Check type arguments before origins so they unify // even if the origins don't match; for better error // messages (see go.dev/issue/53692). xargs := x.TypeArgs().list() yargs := y.TypeArgs().list() if len(xargs) != len(yargs) { return false } for i, xarg := range xargs { if !u.nify(xarg, yargs[i], mode, p) { return false } } return identicalOrigin(x, y) } case *TypeParam: // x must be an unbound type parameter (see comment above). if debug { assert(u.asTypeParam(x) == nil) } // By definition, a valid type argument must be in the type set of // the respective type constraint. Therefore, the type argument's // underlying type must be in the set of underlying types of that // constraint. If there is a single such underlying type, it's the // constraint's core type. It must match the type argument's under- // lying type, irrespective of whether the actual type argument, // which may be a defined type, is actually in the type set (that // will be determined at instantiation time). // Thus, if we have the core type of an unbound type parameter, // we know the structure of the possible types satisfying such // parameters. Use that core type for further unification // (see go.dev/issue/50755 for a test case). if enableCoreTypeUnification { // Because the core type is always an underlying type, // unification will take care of matching against a // defined or literal type automatically. // If y is also an unbound type parameter, we will end // up here again with x and y swapped, so we don't // need to take care of that case separately. if cx := coreType(x); cx != nil { if traceInference { u.tracef("core %s ≡ %s", x, y) } // If y is a defined type, it may not match against cx which // is an underlying type (incl. int, string, etc.). Use assign // mode here so that the unifier automatically takes under(y) // if necessary. return u.nify(cx, y, assign, p) } } // x != y and there's nothing to do case nil: // avoid a crash in case of nil type default: panic(sprintf(nil, nil, true, "u.nify(%s, %s, %d)", x, y, mode)) } return false }