// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT. // Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types // validType verifies that the given type does not "expand" indefinitely // producing a cycle in the type graph. // (Cycles involving alias types, as in "type A = [10]A" are detected // earlier, via the objDecl cycle detection mechanism.) func (check *Checker) validType(typ *Named) { check.validType0(typ, nil, nil) } // validType0 checks if the given type is valid. If typ is a type parameter // its value is looked up in the type argument list of the instantiated // (enclosing) type, if it exists. Otherwise the type parameter must be from // an enclosing function and can be ignored. // The nest list describes the stack (the "nest in memory") of types which // contain (or embed in the case of interfaces) other types. For instance, a // struct named S which contains a field of named type F contains (the memory // of) F in S, leading to the nest S->F. If a type appears in its own nest // (say S->F->S) we have an invalid recursive type. The path list is the full // path of named types in a cycle, it is only needed for error reporting. func (check *Checker) validType0(typ Type, nest, path []*Named) bool { switch t := Unalias(typ).(type) { case nil: // We should never see a nil type but be conservative and panic // only in debug mode. if debug { panic("validType0(nil)") } case *Array: return check.validType0(t.elem, nest, path) case *Struct: for _, f := range t.fields { if !check.validType0(f.typ, nest, path) { return false } } case *Union: for _, t := range t.terms { if !check.validType0(t.typ, nest, path) { return false } } case *Interface: for _, etyp := range t.embeddeds { if !check.validType0(etyp, nest, path) { return false } } case *Named: // Exit early if we already know t is valid. // This is purely an optimization but it prevents excessive computation // times in pathological cases such as testdata/fixedbugs/issue6977.go. // (Note: The valids map could also be allocated locally, once for each // validType call.) if check.valids.lookup(t) != nil { break } // Don't report a 2nd error if we already know the type is invalid // (e.g., if a cycle was detected earlier, via under). // Note: ensure that t.orig is fully resolved by calling Underlying(). if !isValid(t.Underlying()) { return false } // If the current type t is also found in nest, (the memory of) t is // embedded in itself, indicating an invalid recursive type. for _, e := range nest { if Identical(e, t) { // We have a cycle. If t != t.Origin() then t is an instance of // the generic type t.Origin(). Because t is in the nest, t must // occur within the definition (RHS) of the generic type t.Origin(), // directly or indirectly, after expansion of the RHS. // Therefore t.Origin() must be invalid, no matter how it is // instantiated since the instantiation t of t.Origin() happens // inside t.Origin()'s RHS and thus is always the same and always // present. // Therefore we can mark the underlying of both t and t.Origin() // as invalid. If t is not an instance of a generic type, t and // t.Origin() are the same. // Furthermore, because we check all types in a package for validity // before type checking is complete, any exported type that is invalid // will have an invalid underlying type and we can't reach here with // such a type (invalid types are excluded above). // Thus, if we reach here with a type t, both t and t.Origin() (if // different in the first place) must be from the current package; // they cannot have been imported. // Therefore it is safe to change their underlying types; there is // no chance for a race condition (the types of the current package // are not yet available to other goroutines). assert(t.obj.pkg == check.pkg) assert(t.Origin().obj.pkg == check.pkg) t.underlying = Typ[Invalid] t.Origin().underlying = Typ[Invalid] // Find the starting point of the cycle and report it. // Because each type in nest must also appear in path (see invariant below), // type t must be in path since it was found in nest. But not every type in path // is in nest. Specifically t may appear in path with an earlier index than the // index of t in nest. Search again. for start, p := range path { if Identical(p, t) { check.cycleError(makeObjList(path[start:])) return false } } panic("cycle start not found") } } // No cycle was found. Check the RHS of t. // Every type added to nest is also added to path; thus every type that is in nest // must also be in path (invariant). But not every type in path is in nest, since // nest may be pruned (see below, *TypeParam case). if !check.validType0(t.Origin().fromRHS, append(nest, t), append(path, t)) { return false } check.valids.add(t) // t is valid case *TypeParam: // A type parameter stands for the type (argument) it was instantiated with. // Check the corresponding type argument for validity if we are in an // instantiated type. if len(nest) > 0 { inst := nest[len(nest)-1] // the type instance // Find the corresponding type argument for the type parameter // and proceed with checking that type argument. for i, tparam := range inst.TypeParams().list() { // The type parameter and type argument lists should // match in length but be careful in case of errors. if t == tparam && i < inst.TypeArgs().Len() { targ := inst.TypeArgs().At(i) // The type argument must be valid in the enclosing // type (where inst was instantiated), hence we must // check targ's validity in the type nest excluding // the current (instantiated) type (see the example // at the end of this file). // For error reporting we keep the full path. return check.validType0(targ, nest[:len(nest)-1], path) } } } } return true } // makeObjList returns the list of type name objects for the given // list of named types. func makeObjList(tlist []*Named) []Object { olist := make([]Object, len(tlist)) for i, t := range tlist { olist[i] = t.obj } return olist } // Here is an example illustrating why we need to exclude the // instantiated type from nest when evaluating the validity of // a type parameter. Given the declarations // // var _ A[A[string]] // // type A[P any] struct { _ B[P] } // type B[P any] struct { _ P } // // we want to determine if the type A[A[string]] is valid. // We start evaluating A[A[string]] outside any type nest: // // A[A[string]] // nest = // path = // // The RHS of A is now evaluated in the A[A[string]] nest: // // struct{_ B[P₁]} // nest = A[A[string]] // path = A[A[string]] // // The struct has a single field of type B[P₁] with which // we continue: // // B[P₁] // nest = A[A[string]] // path = A[A[string]] // // struct{_ P₂} // nest = A[A[string]]->B[P] // path = A[A[string]]->B[P] // // Eventually we reach the type parameter P of type B (P₂): // // P₂ // nest = A[A[string]]->B[P] // path = A[A[string]]->B[P] // // The type argument for P of B is the type parameter P of A (P₁). // It must be evaluated in the type nest that existed when B was // instantiated: // // P₁ // nest = A[A[string]] <== type nest at B's instantiation time // path = A[A[string]]->B[P] // // If we'd use the current nest it would correspond to the path // which will be wrong as we will see shortly. P's type argument // is A[string], which again must be evaluated in the type nest // that existed when A was instantiated with A[string]. That type // nest is empty: // // A[string] // nest = <== type nest at A's instantiation time // path = A[A[string]]->B[P] // // Evaluation then proceeds as before for A[string]: // // struct{_ B[P₁]} // nest = A[string] // path = A[A[string]]->B[P]->A[string] // // Now we reach B[P] again. If we had not adjusted nest, it would // correspond to path, and we would find B[P] in nest, indicating // a cycle, which would clearly be wrong since there's no cycle in // A[string]: // // B[P₁] // nest = A[string] // path = A[A[string]]->B[P]->A[string] <== path contains B[P]! // // But because we use the correct type nest, evaluation proceeds without // errors and we get the evaluation sequence: // // struct{_ P₂} // nest = A[string]->B[P] // path = A[A[string]]->B[P]->A[string]->B[P] // P₂ // nest = A[string]->B[P] // path = A[A[string]]->B[P]->A[string]->B[P] // P₁ // nest = A[string] // path = A[A[string]]->B[P]->A[string]->B[P] // string // nest = // path = A[A[string]]->B[P]->A[string]->B[P] // // At this point we're done and A[A[string]] and is valid.