...

Source file src/internal/trace/batchcursor.go

Documentation: internal/trace

     1  // Copyright 2023 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package trace
     6  
     7  import (
     8  	"cmp"
     9  	"encoding/binary"
    10  	"fmt"
    11  
    12  	"internal/trace/event"
    13  	"internal/trace/event/go122"
    14  )
    15  
    16  type batchCursor struct {
    17  	m       ThreadID
    18  	lastTs  Time
    19  	idx     int       // next index into []batch
    20  	dataOff int       // next index into batch.data
    21  	ev      baseEvent // last read event
    22  }
    23  
    24  func (b *batchCursor) nextEvent(batches []batch, freq frequency) (ok bool, err error) {
    25  	// Batches should generally always have at least one event,
    26  	// but let's be defensive about that and accept empty batches.
    27  	for b.idx < len(batches) && len(batches[b.idx].data) == b.dataOff {
    28  		b.idx++
    29  		b.dataOff = 0
    30  		b.lastTs = 0
    31  	}
    32  	// Have we reached the end of the batches?
    33  	if b.idx == len(batches) {
    34  		return false, nil
    35  	}
    36  	// Initialize lastTs if it hasn't been yet.
    37  	if b.lastTs == 0 {
    38  		b.lastTs = freq.mul(batches[b.idx].time)
    39  	}
    40  	// Read an event out.
    41  	n, tsdiff, err := readTimedBaseEvent(batches[b.idx].data[b.dataOff:], &b.ev)
    42  	if err != nil {
    43  		return false, err
    44  	}
    45  	// Complete the timestamp from the cursor's last timestamp.
    46  	b.ev.time = freq.mul(tsdiff) + b.lastTs
    47  
    48  	// Move the cursor's timestamp forward.
    49  	b.lastTs = b.ev.time
    50  
    51  	// Move the cursor forward.
    52  	b.dataOff += n
    53  	return true, nil
    54  }
    55  
    56  func (b *batchCursor) compare(a *batchCursor) int {
    57  	return cmp.Compare(b.ev.time, a.ev.time)
    58  }
    59  
    60  // readTimedBaseEvent reads out the raw event data from b
    61  // into e. It does not try to interpret the arguments
    62  // but it does validate that the event is a regular
    63  // event with a timestamp (vs. a structural event).
    64  //
    65  // It requires that the event its reading be timed, which must
    66  // be the case for every event in a plain EventBatch.
    67  func readTimedBaseEvent(b []byte, e *baseEvent) (int, timestamp, error) {
    68  	// Get the event type.
    69  	typ := event.Type(b[0])
    70  	specs := go122.Specs()
    71  	if int(typ) >= len(specs) {
    72  		return 0, 0, fmt.Errorf("found invalid event type: %v", typ)
    73  	}
    74  	e.typ = typ
    75  
    76  	// Get spec.
    77  	spec := &specs[typ]
    78  	if len(spec.Args) == 0 || !spec.IsTimedEvent {
    79  		return 0, 0, fmt.Errorf("found event without a timestamp: type=%v", typ)
    80  	}
    81  	n := 1
    82  
    83  	// Read timestamp diff.
    84  	ts, nb := binary.Uvarint(b[n:])
    85  	if nb <= 0 {
    86  		return 0, 0, fmt.Errorf("found invalid uvarint for timestamp")
    87  	}
    88  	n += nb
    89  
    90  	// Read the rest of the arguments.
    91  	for i := 0; i < len(spec.Args)-1; i++ {
    92  		arg, nb := binary.Uvarint(b[n:])
    93  		if nb <= 0 {
    94  			return 0, 0, fmt.Errorf("found invalid uvarint")
    95  		}
    96  		e.args[i] = arg
    97  		n += nb
    98  	}
    99  	return n, timestamp(ts), nil
   100  }
   101  
   102  func heapInsert(heap []*batchCursor, bc *batchCursor) []*batchCursor {
   103  	// Add the cursor to the end of the heap.
   104  	heap = append(heap, bc)
   105  
   106  	// Sift the new entry up to the right place.
   107  	heapSiftUp(heap, len(heap)-1)
   108  	return heap
   109  }
   110  
   111  func heapUpdate(heap []*batchCursor, i int) {
   112  	// Try to sift up.
   113  	if heapSiftUp(heap, i) != i {
   114  		return
   115  	}
   116  	// Try to sift down, if sifting up failed.
   117  	heapSiftDown(heap, i)
   118  }
   119  
   120  func heapRemove(heap []*batchCursor, i int) []*batchCursor {
   121  	// Sift index i up to the root, ignoring actual values.
   122  	for i > 0 {
   123  		heap[(i-1)/2], heap[i] = heap[i], heap[(i-1)/2]
   124  		i = (i - 1) / 2
   125  	}
   126  	// Swap the root with the last element, then remove it.
   127  	heap[0], heap[len(heap)-1] = heap[len(heap)-1], heap[0]
   128  	heap = heap[:len(heap)-1]
   129  	// Sift the root down.
   130  	heapSiftDown(heap, 0)
   131  	return heap
   132  }
   133  
   134  func heapSiftUp(heap []*batchCursor, i int) int {
   135  	for i > 0 && heap[(i-1)/2].ev.time > heap[i].ev.time {
   136  		heap[(i-1)/2], heap[i] = heap[i], heap[(i-1)/2]
   137  		i = (i - 1) / 2
   138  	}
   139  	return i
   140  }
   141  
   142  func heapSiftDown(heap []*batchCursor, i int) int {
   143  	for {
   144  		m := min3(heap, i, 2*i+1, 2*i+2)
   145  		if m == i {
   146  			// Heap invariant already applies.
   147  			break
   148  		}
   149  		heap[i], heap[m] = heap[m], heap[i]
   150  		i = m
   151  	}
   152  	return i
   153  }
   154  
   155  func min3(b []*batchCursor, i0, i1, i2 int) int {
   156  	minIdx := i0
   157  	minT := maxTime
   158  	if i0 < len(b) {
   159  		minT = b[i0].ev.time
   160  	}
   161  	if i1 < len(b) {
   162  		if t := b[i1].ev.time; t < minT {
   163  			minT = t
   164  			minIdx = i1
   165  		}
   166  	}
   167  	if i2 < len(b) {
   168  		if t := b[i2].ev.time; t < minT {
   169  			minT = t
   170  			minIdx = i2
   171  		}
   172  	}
   173  	return minIdx
   174  }
   175  

View as plain text