...

Source file src/math/big/sqrt_test.go

Documentation: math/big

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package big
     6  
     7  import (
     8  	"fmt"
     9  	"math"
    10  	"math/rand"
    11  	"testing"
    12  )
    13  
    14  // TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
    15  // behaves like float math.Sqrt.
    16  func TestFloatSqrt64(t *testing.T) {
    17  	for i := 0; i < 1e5; i++ {
    18  		if i == 1e2 && testing.Short() {
    19  			break
    20  		}
    21  		r := rand.Float64()
    22  
    23  		got := new(Float).SetPrec(53)
    24  		got.Sqrt(NewFloat(r))
    25  		want := NewFloat(math.Sqrt(r))
    26  		if got.Cmp(want) != 0 {
    27  			t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
    28  		}
    29  	}
    30  }
    31  
    32  func TestFloatSqrt(t *testing.T) {
    33  	for _, test := range []struct {
    34  		x    string
    35  		want string
    36  	}{
    37  		// Test values were generated on Wolfram Alpha using query
    38  		//   'sqrt(N) to 350 digits'
    39  		// 350 decimal digits give up to 1000 binary digits.
    40  		{"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
    41  		{"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
    42  		{"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
    43  		{"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
    44  		{"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
    45  		{"4.0", "2.0"},
    46  
    47  		{"1p512", "1p256"},
    48  		{"4p1024", "2p512"},
    49  		{"9p2048", "3p1024"},
    50  
    51  		{"1p-1024", "1p-512"},
    52  		{"4p-2048", "2p-1024"},
    53  		{"9p-4096", "3p-2048"},
    54  	} {
    55  		for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
    56  			x := new(Float).SetPrec(prec)
    57  			x.Parse(test.x, 10)
    58  
    59  			got := new(Float).SetPrec(prec).Sqrt(x)
    60  			want := new(Float).SetPrec(prec)
    61  			want.Parse(test.want, 10)
    62  			if got.Cmp(want) != 0 {
    63  				t.Errorf("prec = %d, Sqrt(%v) =\ngot  %g;\nwant %g",
    64  					prec, test.x, got, want)
    65  			}
    66  
    67  			// Square test.
    68  			// If got holds the square root of x to precision p, then
    69  			//   got = √x + k
    70  			// for some k such that |k| < 2**(-p). Thus,
    71  			//   got² = (√x + k)² = x + 2k√n + k²
    72  			// and the error must satisfy
    73  			//   err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
    74  			// Ignoring the k² term for simplicity.
    75  
    76  			// err = |got² - x|
    77  			// (but do intermediate steps with 32 guard digits to
    78  			// avoid introducing spurious rounding-related errors)
    79  			sq := new(Float).SetPrec(prec+32).Mul(got, got)
    80  			diff := new(Float).Sub(sq, x)
    81  			err := diff.Abs(diff).SetPrec(prec)
    82  
    83  			// maxErr = 2**(-p+1)*√x
    84  			one := new(Float).SetPrec(prec).SetInt64(1)
    85  			maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
    86  
    87  			if err.Cmp(maxErr) >= 0 {
    88  				t.Errorf("prec = %d, Sqrt(%v) =\ngot err  %g;\nwant maxErr %g",
    89  					prec, test.x, err, maxErr)
    90  			}
    91  		}
    92  	}
    93  }
    94  
    95  func TestFloatSqrtSpecial(t *testing.T) {
    96  	for _, test := range []struct {
    97  		x    *Float
    98  		want *Float
    99  	}{
   100  		{NewFloat(+0), NewFloat(+0)},
   101  		{NewFloat(-0), NewFloat(-0)},
   102  		{NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
   103  	} {
   104  		got := new(Float).Sqrt(test.x)
   105  		if got.neg != test.want.neg || got.form != test.want.form {
   106  			t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
   107  				test.x, got, got.neg, test.want, test.want.neg)
   108  		}
   109  	}
   110  
   111  }
   112  
   113  // Benchmarks
   114  
   115  func BenchmarkFloatSqrt(b *testing.B) {
   116  	for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
   117  		x := NewFloat(2)
   118  		z := new(Float).SetPrec(prec)
   119  		b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
   120  			b.ReportAllocs()
   121  			for n := 0; n < b.N; n++ {
   122  				z.Sqrt(x)
   123  			}
   124  		})
   125  	}
   126  }
   127  

View as plain text