...

Source file src/regexp/syntax/compile.go

Documentation: regexp/syntax

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package syntax
     6  
     7  import "unicode"
     8  
     9  // A patchList is a list of instruction pointers that need to be filled in (patched).
    10  // Because the pointers haven't been filled in yet, we can reuse their storage
    11  // to hold the list. It's kind of sleazy, but works well in practice.
    12  // See https://swtch.com/~rsc/regexp/regexp1.html for inspiration.
    13  //
    14  // These aren't really pointers: they're integers, so we can reinterpret them
    15  // this way without using package unsafe. A value l.head denotes
    16  // p.inst[l.head>>1].Out (l.head&1==0) or .Arg (l.head&1==1).
    17  // head == 0 denotes the empty list, okay because we start every program
    18  // with a fail instruction, so we'll never want to point at its output link.
    19  type patchList struct {
    20  	head, tail uint32
    21  }
    22  
    23  func makePatchList(n uint32) patchList {
    24  	return patchList{n, n}
    25  }
    26  
    27  func (l patchList) patch(p *Prog, val uint32) {
    28  	head := l.head
    29  	for head != 0 {
    30  		i := &p.Inst[head>>1]
    31  		if head&1 == 0 {
    32  			head = i.Out
    33  			i.Out = val
    34  		} else {
    35  			head = i.Arg
    36  			i.Arg = val
    37  		}
    38  	}
    39  }
    40  
    41  func (l1 patchList) append(p *Prog, l2 patchList) patchList {
    42  	if l1.head == 0 {
    43  		return l2
    44  	}
    45  	if l2.head == 0 {
    46  		return l1
    47  	}
    48  
    49  	i := &p.Inst[l1.tail>>1]
    50  	if l1.tail&1 == 0 {
    51  		i.Out = l2.head
    52  	} else {
    53  		i.Arg = l2.head
    54  	}
    55  	return patchList{l1.head, l2.tail}
    56  }
    57  
    58  // A frag represents a compiled program fragment.
    59  type frag struct {
    60  	i        uint32    // index of first instruction
    61  	out      patchList // where to record end instruction
    62  	nullable bool      // whether fragment can match empty string
    63  }
    64  
    65  type compiler struct {
    66  	p *Prog
    67  }
    68  
    69  // Compile compiles the regexp into a program to be executed.
    70  // The regexp should have been simplified already (returned from re.Simplify).
    71  func Compile(re *Regexp) (*Prog, error) {
    72  	var c compiler
    73  	c.init()
    74  	f := c.compile(re)
    75  	f.out.patch(c.p, c.inst(InstMatch).i)
    76  	c.p.Start = int(f.i)
    77  	return c.p, nil
    78  }
    79  
    80  func (c *compiler) init() {
    81  	c.p = new(Prog)
    82  	c.p.NumCap = 2 // implicit ( and ) for whole match $0
    83  	c.inst(InstFail)
    84  }
    85  
    86  var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
    87  var anyRune = []rune{0, unicode.MaxRune}
    88  
    89  func (c *compiler) compile(re *Regexp) frag {
    90  	switch re.Op {
    91  	case OpNoMatch:
    92  		return c.fail()
    93  	case OpEmptyMatch:
    94  		return c.nop()
    95  	case OpLiteral:
    96  		if len(re.Rune) == 0 {
    97  			return c.nop()
    98  		}
    99  		var f frag
   100  		for j := range re.Rune {
   101  			f1 := c.rune(re.Rune[j:j+1], re.Flags)
   102  			if j == 0 {
   103  				f = f1
   104  			} else {
   105  				f = c.cat(f, f1)
   106  			}
   107  		}
   108  		return f
   109  	case OpCharClass:
   110  		return c.rune(re.Rune, re.Flags)
   111  	case OpAnyCharNotNL:
   112  		return c.rune(anyRuneNotNL, 0)
   113  	case OpAnyChar:
   114  		return c.rune(anyRune, 0)
   115  	case OpBeginLine:
   116  		return c.empty(EmptyBeginLine)
   117  	case OpEndLine:
   118  		return c.empty(EmptyEndLine)
   119  	case OpBeginText:
   120  		return c.empty(EmptyBeginText)
   121  	case OpEndText:
   122  		return c.empty(EmptyEndText)
   123  	case OpWordBoundary:
   124  		return c.empty(EmptyWordBoundary)
   125  	case OpNoWordBoundary:
   126  		return c.empty(EmptyNoWordBoundary)
   127  	case OpCapture:
   128  		bra := c.cap(uint32(re.Cap << 1))
   129  		sub := c.compile(re.Sub[0])
   130  		ket := c.cap(uint32(re.Cap<<1 | 1))
   131  		return c.cat(c.cat(bra, sub), ket)
   132  	case OpStar:
   133  		return c.star(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
   134  	case OpPlus:
   135  		return c.plus(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
   136  	case OpQuest:
   137  		return c.quest(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
   138  	case OpConcat:
   139  		if len(re.Sub) == 0 {
   140  			return c.nop()
   141  		}
   142  		var f frag
   143  		for i, sub := range re.Sub {
   144  			if i == 0 {
   145  				f = c.compile(sub)
   146  			} else {
   147  				f = c.cat(f, c.compile(sub))
   148  			}
   149  		}
   150  		return f
   151  	case OpAlternate:
   152  		var f frag
   153  		for _, sub := range re.Sub {
   154  			f = c.alt(f, c.compile(sub))
   155  		}
   156  		return f
   157  	}
   158  	panic("regexp: unhandled case in compile")
   159  }
   160  
   161  func (c *compiler) inst(op InstOp) frag {
   162  	// TODO: impose length limit
   163  	f := frag{i: uint32(len(c.p.Inst)), nullable: true}
   164  	c.p.Inst = append(c.p.Inst, Inst{Op: op})
   165  	return f
   166  }
   167  
   168  func (c *compiler) nop() frag {
   169  	f := c.inst(InstNop)
   170  	f.out = makePatchList(f.i << 1)
   171  	return f
   172  }
   173  
   174  func (c *compiler) fail() frag {
   175  	return frag{}
   176  }
   177  
   178  func (c *compiler) cap(arg uint32) frag {
   179  	f := c.inst(InstCapture)
   180  	f.out = makePatchList(f.i << 1)
   181  	c.p.Inst[f.i].Arg = arg
   182  
   183  	if c.p.NumCap < int(arg)+1 {
   184  		c.p.NumCap = int(arg) + 1
   185  	}
   186  	return f
   187  }
   188  
   189  func (c *compiler) cat(f1, f2 frag) frag {
   190  	// concat of failure is failure
   191  	if f1.i == 0 || f2.i == 0 {
   192  		return frag{}
   193  	}
   194  
   195  	// TODO: elide nop
   196  
   197  	f1.out.patch(c.p, f2.i)
   198  	return frag{f1.i, f2.out, f1.nullable && f2.nullable}
   199  }
   200  
   201  func (c *compiler) alt(f1, f2 frag) frag {
   202  	// alt of failure is other
   203  	if f1.i == 0 {
   204  		return f2
   205  	}
   206  	if f2.i == 0 {
   207  		return f1
   208  	}
   209  
   210  	f := c.inst(InstAlt)
   211  	i := &c.p.Inst[f.i]
   212  	i.Out = f1.i
   213  	i.Arg = f2.i
   214  	f.out = f1.out.append(c.p, f2.out)
   215  	f.nullable = f1.nullable || f2.nullable
   216  	return f
   217  }
   218  
   219  func (c *compiler) quest(f1 frag, nongreedy bool) frag {
   220  	f := c.inst(InstAlt)
   221  	i := &c.p.Inst[f.i]
   222  	if nongreedy {
   223  		i.Arg = f1.i
   224  		f.out = makePatchList(f.i << 1)
   225  	} else {
   226  		i.Out = f1.i
   227  		f.out = makePatchList(f.i<<1 | 1)
   228  	}
   229  	f.out = f.out.append(c.p, f1.out)
   230  	return f
   231  }
   232  
   233  // loop returns the fragment for the main loop of a plus or star.
   234  // For plus, it can be used after changing the entry to f1.i.
   235  // For star, it can be used directly when f1 can't match an empty string.
   236  // (When f1 can match an empty string, f1* must be implemented as (f1+)?
   237  // to get the priority match order correct.)
   238  func (c *compiler) loop(f1 frag, nongreedy bool) frag {
   239  	f := c.inst(InstAlt)
   240  	i := &c.p.Inst[f.i]
   241  	if nongreedy {
   242  		i.Arg = f1.i
   243  		f.out = makePatchList(f.i << 1)
   244  	} else {
   245  		i.Out = f1.i
   246  		f.out = makePatchList(f.i<<1 | 1)
   247  	}
   248  	f1.out.patch(c.p, f.i)
   249  	return f
   250  }
   251  
   252  func (c *compiler) star(f1 frag, nongreedy bool) frag {
   253  	if f1.nullable {
   254  		// Use (f1+)? to get priority match order correct.
   255  		// See golang.org/issue/46123.
   256  		return c.quest(c.plus(f1, nongreedy), nongreedy)
   257  	}
   258  	return c.loop(f1, nongreedy)
   259  }
   260  
   261  func (c *compiler) plus(f1 frag, nongreedy bool) frag {
   262  	return frag{f1.i, c.loop(f1, nongreedy).out, f1.nullable}
   263  }
   264  
   265  func (c *compiler) empty(op EmptyOp) frag {
   266  	f := c.inst(InstEmptyWidth)
   267  	c.p.Inst[f.i].Arg = uint32(op)
   268  	f.out = makePatchList(f.i << 1)
   269  	return f
   270  }
   271  
   272  func (c *compiler) rune(r []rune, flags Flags) frag {
   273  	f := c.inst(InstRune)
   274  	f.nullable = false
   275  	i := &c.p.Inst[f.i]
   276  	i.Rune = r
   277  	flags &= FoldCase // only relevant flag is FoldCase
   278  	if len(r) != 1 || unicode.SimpleFold(r[0]) == r[0] {
   279  		// and sometimes not even that
   280  		flags &^= FoldCase
   281  	}
   282  	i.Arg = uint32(flags)
   283  	f.out = makePatchList(f.i << 1)
   284  
   285  	// Special cases for exec machine.
   286  	switch {
   287  	case flags&FoldCase == 0 && (len(r) == 1 || len(r) == 2 && r[0] == r[1]):
   288  		i.Op = InstRune1
   289  	case len(r) == 2 && r[0] == 0 && r[1] == unicode.MaxRune:
   290  		i.Op = InstRuneAny
   291  	case len(r) == 4 && r[0] == 0 && r[1] == '\n'-1 && r[2] == '\n'+1 && r[3] == unicode.MaxRune:
   292  		i.Op = InstRuneAnyNotNL
   293  	}
   294  
   295  	return f
   296  }
   297  

View as plain text