Text file
src/runtime/asm_arm.s
Documentation: runtime
1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5#include "go_asm.h"
6#include "go_tls.h"
7#include "funcdata.h"
8#include "textflag.h"
9
10// _rt0_arm is common startup code for most ARM systems when using
11// internal linking. This is the entry point for the program from the
12// kernel for an ordinary -buildmode=exe program. The stack holds the
13// number of arguments and the C-style argv.
14TEXT _rt0_arm(SB),NOSPLIT|NOFRAME,$0
15 MOVW (R13), R0 // argc
16 MOVW $4(R13), R1 // argv
17 B runtime·rt0_go(SB)
18
19// main is common startup code for most ARM systems when using
20// external linking. The C startup code will call the symbol "main"
21// passing argc and argv in the usual C ABI registers R0 and R1.
22TEXT main(SB),NOSPLIT|NOFRAME,$0
23 B runtime·rt0_go(SB)
24
25// _rt0_arm_lib is common startup code for most ARM systems when
26// using -buildmode=c-archive or -buildmode=c-shared. The linker will
27// arrange to invoke this function as a global constructor (for
28// c-archive) or when the shared library is loaded (for c-shared).
29// We expect argc and argv to be passed in the usual C ABI registers
30// R0 and R1.
31TEXT _rt0_arm_lib(SB),NOSPLIT,$104
32 // Preserve callee-save registers. Raspberry Pi's dlopen(), for example,
33 // actually cares that R11 is preserved.
34 MOVW R4, 12(R13)
35 MOVW R5, 16(R13)
36 MOVW R6, 20(R13)
37 MOVW R7, 24(R13)
38 MOVW R8, 28(R13)
39 MOVW g, 32(R13)
40 MOVW R11, 36(R13)
41
42 // Skip floating point registers on goarmsoftfp != 0.
43 MOVB runtime·goarmsoftfp(SB), R11
44 CMP $0, R11
45 BNE skipfpsave
46 MOVD F8, (40+8*0)(R13)
47 MOVD F9, (40+8*1)(R13)
48 MOVD F10, (40+8*2)(R13)
49 MOVD F11, (40+8*3)(R13)
50 MOVD F12, (40+8*4)(R13)
51 MOVD F13, (40+8*5)(R13)
52 MOVD F14, (40+8*6)(R13)
53 MOVD F15, (40+8*7)(R13)
54skipfpsave:
55 // Save argc/argv.
56 MOVW R0, _rt0_arm_lib_argc<>(SB)
57 MOVW R1, _rt0_arm_lib_argv<>(SB)
58
59 MOVW $0, g // Initialize g.
60
61 // Synchronous initialization.
62 CALL runtime·libpreinit(SB)
63
64 // Create a new thread to do the runtime initialization.
65 MOVW _cgo_sys_thread_create(SB), R2
66 CMP $0, R2
67 BEQ nocgo
68 MOVW $_rt0_arm_lib_go<>(SB), R0
69 MOVW $0, R1
70 BL (R2)
71 B rr
72nocgo:
73 MOVW $0x800000, R0 // stacksize = 8192KB
74 MOVW $_rt0_arm_lib_go<>(SB), R1 // fn
75 MOVW R0, 4(R13)
76 MOVW R1, 8(R13)
77 BL runtime·newosproc0(SB)
78rr:
79 // Restore callee-save registers and return.
80 MOVB runtime·goarmsoftfp(SB), R11
81 CMP $0, R11
82 BNE skipfprest
83 MOVD (40+8*0)(R13), F8
84 MOVD (40+8*1)(R13), F9
85 MOVD (40+8*2)(R13), F10
86 MOVD (40+8*3)(R13), F11
87 MOVD (40+8*4)(R13), F12
88 MOVD (40+8*5)(R13), F13
89 MOVD (40+8*6)(R13), F14
90 MOVD (40+8*7)(R13), F15
91skipfprest:
92 MOVW 12(R13), R4
93 MOVW 16(R13), R5
94 MOVW 20(R13), R6
95 MOVW 24(R13), R7
96 MOVW 28(R13), R8
97 MOVW 32(R13), g
98 MOVW 36(R13), R11
99 RET
100
101// _rt0_arm_lib_go initializes the Go runtime.
102// This is started in a separate thread by _rt0_arm_lib.
103TEXT _rt0_arm_lib_go<>(SB),NOSPLIT,$8
104 MOVW _rt0_arm_lib_argc<>(SB), R0
105 MOVW _rt0_arm_lib_argv<>(SB), R1
106 B runtime·rt0_go(SB)
107
108DATA _rt0_arm_lib_argc<>(SB)/4,$0
109GLOBL _rt0_arm_lib_argc<>(SB),NOPTR,$4
110DATA _rt0_arm_lib_argv<>(SB)/4,$0
111GLOBL _rt0_arm_lib_argv<>(SB),NOPTR,$4
112
113// using NOFRAME means do not save LR on stack.
114// argc is in R0, argv is in R1.
115TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
116 MOVW $0xcafebabe, R12
117
118 // copy arguments forward on an even stack
119 // use R13 instead of SP to avoid linker rewriting the offsets
120 SUB $64, R13 // plenty of scratch
121 AND $~7, R13
122 MOVW R0, 60(R13) // save argc, argv away
123 MOVW R1, 64(R13)
124
125 // set up g register
126 // g is R10
127 MOVW $runtime·g0(SB), g
128 MOVW $runtime·m0(SB), R8
129
130 // save m->g0 = g0
131 MOVW g, m_g0(R8)
132 // save g->m = m0
133 MOVW R8, g_m(g)
134
135 // create istack out of the OS stack
136 // (1MB of system stack is available on iOS and Android)
137 MOVW $(-64*1024+104)(R13), R0
138 MOVW R0, g_stackguard0(g)
139 MOVW R0, g_stackguard1(g)
140 MOVW R0, (g_stack+stack_lo)(g)
141 MOVW R13, (g_stack+stack_hi)(g)
142
143 BL runtime·emptyfunc(SB) // fault if stack check is wrong
144
145#ifdef GOOS_openbsd
146 // Save g to TLS so that it is available from signal trampoline.
147 BL runtime·save_g(SB)
148#endif
149
150 BL runtime·_initcgo(SB) // will clobber R0-R3
151
152 // update stackguard after _cgo_init
153 MOVW (g_stack+stack_lo)(g), R0
154 ADD $const_stackGuard, R0
155 MOVW R0, g_stackguard0(g)
156 MOVW R0, g_stackguard1(g)
157
158 BL runtime·check(SB)
159
160 // saved argc, argv
161 MOVW 60(R13), R0
162 MOVW R0, 4(R13)
163 MOVW 64(R13), R1
164 MOVW R1, 8(R13)
165 BL runtime·args(SB)
166 BL runtime·checkgoarm(SB)
167 BL runtime·osinit(SB)
168 BL runtime·schedinit(SB)
169
170 // create a new goroutine to start program
171 SUB $8, R13
172 MOVW $runtime·mainPC(SB), R0
173 MOVW R0, 4(R13) // arg 1: fn
174 MOVW $0, R0
175 MOVW R0, 0(R13) // dummy LR
176 BL runtime·newproc(SB)
177 ADD $8, R13 // pop args and LR
178
179 // start this M
180 BL runtime·mstart(SB)
181
182 MOVW $1234, R0
183 MOVW $1000, R1
184 MOVW R0, (R1) // fail hard
185
186DATA runtime·mainPC+0(SB)/4,$runtime·main(SB)
187GLOBL runtime·mainPC(SB),RODATA,$4
188
189TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
190 // gdb won't skip this breakpoint instruction automatically,
191 // so you must manually "set $pc+=4" to skip it and continue.
192#ifdef GOOS_plan9
193 WORD $0xD1200070 // undefined instruction used as armv5 breakpoint in Plan 9
194#else
195 WORD $0xe7f001f0 // undefined instruction that gdb understands is a software breakpoint
196#endif
197 RET
198
199TEXT runtime·asminit(SB),NOSPLIT,$0-0
200 // disable runfast (flush-to-zero) mode of vfp if runtime.goarmsoftfp == 0
201 MOVB runtime·goarmsoftfp(SB), R11
202 CMP $0, R11
203 BNE 4(PC)
204 WORD $0xeef1ba10 // vmrs r11, fpscr
205 BIC $(1<<24), R11
206 WORD $0xeee1ba10 // vmsr fpscr, r11
207 RET
208
209TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
210 BL runtime·mstart0(SB)
211 RET // not reached
212
213/*
214 * go-routine
215 */
216
217// void gogo(Gobuf*)
218// restore state from Gobuf; longjmp
219TEXT runtime·gogo(SB),NOSPLIT|NOFRAME,$0-4
220 MOVW buf+0(FP), R1
221 MOVW gobuf_g(R1), R0
222 MOVW 0(R0), R2 // make sure g != nil
223 B gogo<>(SB)
224
225TEXT gogo<>(SB),NOSPLIT|NOFRAME,$0
226 BL setg<>(SB)
227 MOVW gobuf_sp(R1), R13 // restore SP==R13
228 MOVW gobuf_lr(R1), LR
229 MOVW gobuf_ret(R1), R0
230 MOVW gobuf_ctxt(R1), R7
231 MOVW $0, R11
232 MOVW R11, gobuf_sp(R1) // clear to help garbage collector
233 MOVW R11, gobuf_ret(R1)
234 MOVW R11, gobuf_lr(R1)
235 MOVW R11, gobuf_ctxt(R1)
236 MOVW gobuf_pc(R1), R11
237 CMP R11, R11 // set condition codes for == test, needed by stack split
238 B (R11)
239
240// func mcall(fn func(*g))
241// Switch to m->g0's stack, call fn(g).
242// Fn must never return. It should gogo(&g->sched)
243// to keep running g.
244TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4
245 // Save caller state in g->sched.
246 MOVW R13, (g_sched+gobuf_sp)(g)
247 MOVW LR, (g_sched+gobuf_pc)(g)
248 MOVW $0, R11
249 MOVW R11, (g_sched+gobuf_lr)(g)
250
251 // Switch to m->g0 & its stack, call fn.
252 MOVW g, R1
253 MOVW g_m(g), R8
254 MOVW m_g0(R8), R0
255 BL setg<>(SB)
256 CMP g, R1
257 B.NE 2(PC)
258 B runtime·badmcall(SB)
259 MOVW fn+0(FP), R0
260 MOVW (g_sched+gobuf_sp)(g), R13
261 SUB $8, R13
262 MOVW R1, 4(R13)
263 MOVW R0, R7
264 MOVW 0(R0), R0
265 BL (R0)
266 B runtime·badmcall2(SB)
267 RET
268
269// systemstack_switch is a dummy routine that systemstack leaves at the bottom
270// of the G stack. We need to distinguish the routine that
271// lives at the bottom of the G stack from the one that lives
272// at the top of the system stack because the one at the top of
273// the system stack terminates the stack walk (see topofstack()).
274TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0
275 MOVW $0, R0
276 BL (R0) // clobber lr to ensure push {lr} is kept
277 RET
278
279// func systemstack(fn func())
280TEXT runtime·systemstack(SB),NOSPLIT,$0-4
281 MOVW fn+0(FP), R0 // R0 = fn
282 MOVW g_m(g), R1 // R1 = m
283
284 MOVW m_gsignal(R1), R2 // R2 = gsignal
285 CMP g, R2
286 B.EQ noswitch
287
288 MOVW m_g0(R1), R2 // R2 = g0
289 CMP g, R2
290 B.EQ noswitch
291
292 MOVW m_curg(R1), R3
293 CMP g, R3
294 B.EQ switch
295
296 // Bad: g is not gsignal, not g0, not curg. What is it?
297 // Hide call from linker nosplit analysis.
298 MOVW $runtime·badsystemstack(SB), R0
299 BL (R0)
300 B runtime·abort(SB)
301
302switch:
303 // save our state in g->sched. Pretend to
304 // be systemstack_switch if the G stack is scanned.
305 BL gosave_systemstack_switch<>(SB)
306
307 // switch to g0
308 MOVW R0, R5
309 MOVW R2, R0
310 BL setg<>(SB)
311 MOVW R5, R0
312 MOVW (g_sched+gobuf_sp)(R2), R13
313
314 // call target function
315 MOVW R0, R7
316 MOVW 0(R0), R0
317 BL (R0)
318
319 // switch back to g
320 MOVW g_m(g), R1
321 MOVW m_curg(R1), R0
322 BL setg<>(SB)
323 MOVW (g_sched+gobuf_sp)(g), R13
324 MOVW $0, R3
325 MOVW R3, (g_sched+gobuf_sp)(g)
326 RET
327
328noswitch:
329 // Using a tail call here cleans up tracebacks since we won't stop
330 // at an intermediate systemstack.
331 MOVW R0, R7
332 MOVW 0(R0), R0
333 MOVW.P 4(R13), R14 // restore LR
334 B (R0)
335
336// func switchToCrashStack0(fn func())
337TEXT runtime·switchToCrashStack0(SB), NOSPLIT, $0-4
338 MOVW fn+0(FP), R7 // context register
339 MOVW g_m(g), R1 // curm
340
341 // set g to gcrash
342 MOVW $runtime·gcrash(SB), R0
343 BL setg<>(SB) // g = &gcrash
344 MOVW R1, g_m(g) // g.m = curm
345 MOVW g, m_g0(R1) // curm.g0 = g
346
347 // switch to crashstack
348 MOVW (g_stack+stack_hi)(g), R1
349 SUB $(4*8), R1
350 MOVW R1, R13
351
352 // call target function
353 MOVW 0(R7), R0
354 BL (R0)
355
356 // should never return
357 CALL runtime·abort(SB)
358 UNDEF
359
360/*
361 * support for morestack
362 */
363
364// Called during function prolog when more stack is needed.
365// R3 prolog's LR
366// using NOFRAME means do not save LR on stack.
367//
368// The traceback routines see morestack on a g0 as being
369// the top of a stack (for example, morestack calling newstack
370// calling the scheduler calling newm calling gc), so we must
371// record an argument size. For that purpose, it has no arguments.
372TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
373 // Cannot grow scheduler stack (m->g0).
374 MOVW g_m(g), R8
375 MOVW m_g0(R8), R4
376
377 // Called from f.
378 // Set g->sched to context in f.
379 MOVW R13, (g_sched+gobuf_sp)(g)
380 MOVW LR, (g_sched+gobuf_pc)(g)
381 MOVW R3, (g_sched+gobuf_lr)(g)
382 MOVW R7, (g_sched+gobuf_ctxt)(g)
383
384 CMP g, R4
385 BNE 3(PC)
386 BL runtime·badmorestackg0(SB)
387 B runtime·abort(SB)
388
389 // Cannot grow signal stack (m->gsignal).
390 MOVW m_gsignal(R8), R4
391 CMP g, R4
392 BNE 3(PC)
393 BL runtime·badmorestackgsignal(SB)
394 B runtime·abort(SB)
395
396 // Called from f.
397 // Set m->morebuf to f's caller.
398 MOVW R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
399 MOVW R13, (m_morebuf+gobuf_sp)(R8) // f's caller's SP
400 MOVW g, (m_morebuf+gobuf_g)(R8)
401
402 // Call newstack on m->g0's stack.
403 MOVW m_g0(R8), R0
404 BL setg<>(SB)
405 MOVW (g_sched+gobuf_sp)(g), R13
406 MOVW $0, R0
407 MOVW.W R0, -4(R13) // create a call frame on g0 (saved LR)
408 BL runtime·newstack(SB)
409
410 // Not reached, but make sure the return PC from the call to newstack
411 // is still in this function, and not the beginning of the next.
412 RET
413
414TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
415 // Force SPWRITE. This function doesn't actually write SP,
416 // but it is called with a special calling convention where
417 // the caller doesn't save LR on stack but passes it as a
418 // register (R3), and the unwinder currently doesn't understand.
419 // Make it SPWRITE to stop unwinding. (See issue 54332)
420 MOVW R13, R13
421
422 MOVW $0, R7
423 B runtime·morestack(SB)
424
425// reflectcall: call a function with the given argument list
426// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
427// we don't have variable-sized frames, so we use a small number
428// of constant-sized-frame functions to encode a few bits of size in the pc.
429// Caution: ugly multiline assembly macros in your future!
430
431#define DISPATCH(NAME,MAXSIZE) \
432 CMP $MAXSIZE, R0; \
433 B.HI 3(PC); \
434 MOVW $NAME(SB), R1; \
435 B (R1)
436
437TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-28
438 MOVW frameSize+20(FP), R0
439 DISPATCH(runtime·call16, 16)
440 DISPATCH(runtime·call32, 32)
441 DISPATCH(runtime·call64, 64)
442 DISPATCH(runtime·call128, 128)
443 DISPATCH(runtime·call256, 256)
444 DISPATCH(runtime·call512, 512)
445 DISPATCH(runtime·call1024, 1024)
446 DISPATCH(runtime·call2048, 2048)
447 DISPATCH(runtime·call4096, 4096)
448 DISPATCH(runtime·call8192, 8192)
449 DISPATCH(runtime·call16384, 16384)
450 DISPATCH(runtime·call32768, 32768)
451 DISPATCH(runtime·call65536, 65536)
452 DISPATCH(runtime·call131072, 131072)
453 DISPATCH(runtime·call262144, 262144)
454 DISPATCH(runtime·call524288, 524288)
455 DISPATCH(runtime·call1048576, 1048576)
456 DISPATCH(runtime·call2097152, 2097152)
457 DISPATCH(runtime·call4194304, 4194304)
458 DISPATCH(runtime·call8388608, 8388608)
459 DISPATCH(runtime·call16777216, 16777216)
460 DISPATCH(runtime·call33554432, 33554432)
461 DISPATCH(runtime·call67108864, 67108864)
462 DISPATCH(runtime·call134217728, 134217728)
463 DISPATCH(runtime·call268435456, 268435456)
464 DISPATCH(runtime·call536870912, 536870912)
465 DISPATCH(runtime·call1073741824, 1073741824)
466 MOVW $runtime·badreflectcall(SB), R1
467 B (R1)
468
469#define CALLFN(NAME,MAXSIZE) \
470TEXT NAME(SB), WRAPPER, $MAXSIZE-28; \
471 NO_LOCAL_POINTERS; \
472 /* copy arguments to stack */ \
473 MOVW stackArgs+8(FP), R0; \
474 MOVW stackArgsSize+12(FP), R2; \
475 ADD $4, R13, R1; \
476 CMP $0, R2; \
477 B.EQ 5(PC); \
478 MOVBU.P 1(R0), R5; \
479 MOVBU.P R5, 1(R1); \
480 SUB $1, R2, R2; \
481 B -5(PC); \
482 /* call function */ \
483 MOVW f+4(FP), R7; \
484 MOVW (R7), R0; \
485 PCDATA $PCDATA_StackMapIndex, $0; \
486 BL (R0); \
487 /* copy return values back */ \
488 MOVW stackArgsType+0(FP), R4; \
489 MOVW stackArgs+8(FP), R0; \
490 MOVW stackArgsSize+12(FP), R2; \
491 MOVW stackArgsRetOffset+16(FP), R3; \
492 ADD $4, R13, R1; \
493 ADD R3, R1; \
494 ADD R3, R0; \
495 SUB R3, R2; \
496 BL callRet<>(SB); \
497 RET
498
499// callRet copies return values back at the end of call*. This is a
500// separate function so it can allocate stack space for the arguments
501// to reflectcallmove. It does not follow the Go ABI; it expects its
502// arguments in registers.
503TEXT callRet<>(SB), NOSPLIT, $20-0
504 MOVW R4, 4(R13)
505 MOVW R0, 8(R13)
506 MOVW R1, 12(R13)
507 MOVW R2, 16(R13)
508 MOVW $0, R7
509 MOVW R7, 20(R13)
510 BL runtime·reflectcallmove(SB)
511 RET
512
513CALLFN(·call16, 16)
514CALLFN(·call32, 32)
515CALLFN(·call64, 64)
516CALLFN(·call128, 128)
517CALLFN(·call256, 256)
518CALLFN(·call512, 512)
519CALLFN(·call1024, 1024)
520CALLFN(·call2048, 2048)
521CALLFN(·call4096, 4096)
522CALLFN(·call8192, 8192)
523CALLFN(·call16384, 16384)
524CALLFN(·call32768, 32768)
525CALLFN(·call65536, 65536)
526CALLFN(·call131072, 131072)
527CALLFN(·call262144, 262144)
528CALLFN(·call524288, 524288)
529CALLFN(·call1048576, 1048576)
530CALLFN(·call2097152, 2097152)
531CALLFN(·call4194304, 4194304)
532CALLFN(·call8388608, 8388608)
533CALLFN(·call16777216, 16777216)
534CALLFN(·call33554432, 33554432)
535CALLFN(·call67108864, 67108864)
536CALLFN(·call134217728, 134217728)
537CALLFN(·call268435456, 268435456)
538CALLFN(·call536870912, 536870912)
539CALLFN(·call1073741824, 1073741824)
540
541// Save state of caller into g->sched,
542// but using fake PC from systemstack_switch.
543// Must only be called from functions with no locals ($0)
544// or else unwinding from systemstack_switch is incorrect.
545// Smashes R11.
546TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
547 MOVW $runtime·systemstack_switch(SB), R11
548 ADD $4, R11 // get past push {lr}
549 MOVW R11, (g_sched+gobuf_pc)(g)
550 MOVW R13, (g_sched+gobuf_sp)(g)
551 MOVW $0, R11
552 MOVW R11, (g_sched+gobuf_lr)(g)
553 MOVW R11, (g_sched+gobuf_ret)(g)
554 // Assert ctxt is zero. See func save.
555 MOVW (g_sched+gobuf_ctxt)(g), R11
556 TST R11, R11
557 B.EQ 2(PC)
558 BL runtime·abort(SB)
559 RET
560
561// func asmcgocall_no_g(fn, arg unsafe.Pointer)
562// Call fn(arg) aligned appropriately for the gcc ABI.
563// Called on a system stack, and there may be no g yet (during needm).
564TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-8
565 MOVW fn+0(FP), R1
566 MOVW arg+4(FP), R0
567 MOVW R13, R2
568 SUB $32, R13
569 BIC $0x7, R13 // alignment for gcc ABI
570 MOVW R2, 8(R13)
571 BL (R1)
572 MOVW 8(R13), R2
573 MOVW R2, R13
574 RET
575
576// func asmcgocall(fn, arg unsafe.Pointer) int32
577// Call fn(arg) on the scheduler stack,
578// aligned appropriately for the gcc ABI.
579// See cgocall.go for more details.
580TEXT ·asmcgocall(SB),NOSPLIT,$0-12
581 MOVW fn+0(FP), R1
582 MOVW arg+4(FP), R0
583
584 MOVW R13, R2
585 CMP $0, g
586 BEQ nosave
587 MOVW g, R4
588
589 // Figure out if we need to switch to m->g0 stack.
590 // We get called to create new OS threads too, and those
591 // come in on the m->g0 stack already. Or we might already
592 // be on the m->gsignal stack.
593 MOVW g_m(g), R8
594 MOVW m_gsignal(R8), R3
595 CMP R3, g
596 BEQ nosave
597 MOVW m_g0(R8), R3
598 CMP R3, g
599 BEQ nosave
600 BL gosave_systemstack_switch<>(SB)
601 MOVW R0, R5
602 MOVW R3, R0
603 BL setg<>(SB)
604 MOVW R5, R0
605 MOVW (g_sched+gobuf_sp)(g), R13
606
607 // Now on a scheduling stack (a pthread-created stack).
608 SUB $24, R13
609 BIC $0x7, R13 // alignment for gcc ABI
610 MOVW R4, 20(R13) // save old g
611 MOVW (g_stack+stack_hi)(R4), R4
612 SUB R2, R4
613 MOVW R4, 16(R13) // save depth in stack (can't just save SP, as stack might be copied during a callback)
614 BL (R1)
615
616 // Restore registers, g, stack pointer.
617 MOVW R0, R5
618 MOVW 20(R13), R0
619 BL setg<>(SB)
620 MOVW (g_stack+stack_hi)(g), R1
621 MOVW 16(R13), R2
622 SUB R2, R1
623 MOVW R5, R0
624 MOVW R1, R13
625
626 MOVW R0, ret+8(FP)
627 RET
628
629nosave:
630 // Running on a system stack, perhaps even without a g.
631 // Having no g can happen during thread creation or thread teardown
632 // (see needm/dropm on Solaris, for example).
633 // This code is like the above sequence but without saving/restoring g
634 // and without worrying about the stack moving out from under us
635 // (because we're on a system stack, not a goroutine stack).
636 // The above code could be used directly if already on a system stack,
637 // but then the only path through this code would be a rare case on Solaris.
638 // Using this code for all "already on system stack" calls exercises it more,
639 // which should help keep it correct.
640 SUB $24, R13
641 BIC $0x7, R13 // alignment for gcc ABI
642 // save null g in case someone looks during debugging.
643 MOVW $0, R4
644 MOVW R4, 20(R13)
645 MOVW R2, 16(R13) // Save old stack pointer.
646 BL (R1)
647 // Restore stack pointer.
648 MOVW 16(R13), R2
649 MOVW R2, R13
650 MOVW R0, ret+8(FP)
651 RET
652
653// cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
654// See cgocall.go for more details.
655TEXT ·cgocallback(SB),NOSPLIT,$12-12
656 NO_LOCAL_POINTERS
657
658 // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
659 // It is used to dropm while thread is exiting.
660 MOVW fn+0(FP), R1
661 CMP $0, R1
662 B.NE loadg
663 // Restore the g from frame.
664 MOVW frame+4(FP), g
665 B dropm
666
667loadg:
668 // Load m and g from thread-local storage.
669#ifdef GOOS_openbsd
670 BL runtime·load_g(SB)
671#else
672 MOVB runtime·iscgo(SB), R0
673 CMP $0, R0
674 BL.NE runtime·load_g(SB)
675#endif
676
677 // If g is nil, Go did not create the current thread,
678 // or if this thread never called into Go on pthread platforms.
679 // Call needm to obtain one for temporary use.
680 // In this case, we're running on the thread stack, so there's
681 // lots of space, but the linker doesn't know. Hide the call from
682 // the linker analysis by using an indirect call.
683 CMP $0, g
684 B.EQ needm
685
686 MOVW g_m(g), R8
687 MOVW R8, savedm-4(SP)
688 B havem
689
690needm:
691 MOVW g, savedm-4(SP) // g is zero, so is m.
692 MOVW $runtime·needAndBindM(SB), R0
693 BL (R0)
694
695 // Set m->g0->sched.sp = SP, so that if a panic happens
696 // during the function we are about to execute, it will
697 // have a valid SP to run on the g0 stack.
698 // The next few lines (after the havem label)
699 // will save this SP onto the stack and then write
700 // the same SP back to m->sched.sp. That seems redundant,
701 // but if an unrecovered panic happens, unwindm will
702 // restore the g->sched.sp from the stack location
703 // and then systemstack will try to use it. If we don't set it here,
704 // that restored SP will be uninitialized (typically 0) and
705 // will not be usable.
706 MOVW g_m(g), R8
707 MOVW m_g0(R8), R3
708 MOVW R13, (g_sched+gobuf_sp)(R3)
709
710havem:
711 // Now there's a valid m, and we're running on its m->g0.
712 // Save current m->g0->sched.sp on stack and then set it to SP.
713 // Save current sp in m->g0->sched.sp in preparation for
714 // switch back to m->curg stack.
715 // NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-12(SP).
716 MOVW m_g0(R8), R3
717 MOVW (g_sched+gobuf_sp)(R3), R4
718 MOVW R4, savedsp-12(SP) // must match frame size
719 MOVW R13, (g_sched+gobuf_sp)(R3)
720
721 // Switch to m->curg stack and call runtime.cgocallbackg.
722 // Because we are taking over the execution of m->curg
723 // but *not* resuming what had been running, we need to
724 // save that information (m->curg->sched) so we can restore it.
725 // We can restore m->curg->sched.sp easily, because calling
726 // runtime.cgocallbackg leaves SP unchanged upon return.
727 // To save m->curg->sched.pc, we push it onto the curg stack and
728 // open a frame the same size as cgocallback's g0 frame.
729 // Once we switch to the curg stack, the pushed PC will appear
730 // to be the return PC of cgocallback, so that the traceback
731 // will seamlessly trace back into the earlier calls.
732 MOVW m_curg(R8), R0
733 BL setg<>(SB)
734 MOVW (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
735 MOVW (g_sched+gobuf_pc)(g), R5
736 MOVW R5, -(12+4)(R4) // "saved LR"; must match frame size
737 // Gather our arguments into registers.
738 MOVW fn+0(FP), R1
739 MOVW frame+4(FP), R2
740 MOVW ctxt+8(FP), R3
741 MOVW $-(12+4)(R4), R13 // switch stack; must match frame size
742 MOVW R1, 4(R13)
743 MOVW R2, 8(R13)
744 MOVW R3, 12(R13)
745 BL runtime·cgocallbackg(SB)
746
747 // Restore g->sched (== m->curg->sched) from saved values.
748 MOVW 0(R13), R5
749 MOVW R5, (g_sched+gobuf_pc)(g)
750 MOVW $(12+4)(R13), R4 // must match frame size
751 MOVW R4, (g_sched+gobuf_sp)(g)
752
753 // Switch back to m->g0's stack and restore m->g0->sched.sp.
754 // (Unlike m->curg, the g0 goroutine never uses sched.pc,
755 // so we do not have to restore it.)
756 MOVW g_m(g), R8
757 MOVW m_g0(R8), R0
758 BL setg<>(SB)
759 MOVW (g_sched+gobuf_sp)(g), R13
760 MOVW savedsp-12(SP), R4 // must match frame size
761 MOVW R4, (g_sched+gobuf_sp)(g)
762
763 // If the m on entry was nil, we called needm above to borrow an m,
764 // 1. for the duration of the call on non-pthread platforms,
765 // 2. or the duration of the C thread alive on pthread platforms.
766 // If the m on entry wasn't nil,
767 // 1. the thread might be a Go thread,
768 // 2. or it wasn't the first call from a C thread on pthread platforms,
769 // since then we skip dropm to reuse the m in the first call.
770 MOVW savedm-4(SP), R6
771 CMP $0, R6
772 B.NE done
773
774 // Skip dropm to reuse it in the next call, when a pthread key has been created.
775 MOVW _cgo_pthread_key_created(SB), R6
776 // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
777 CMP $0, R6
778 B.EQ dropm
779 MOVW (R6), R6
780 CMP $0, R6
781 B.NE done
782
783dropm:
784 MOVW $runtime·dropm(SB), R0
785 BL (R0)
786
787done:
788 // Done!
789 RET
790
791// void setg(G*); set g. for use by needm.
792TEXT runtime·setg(SB),NOSPLIT|NOFRAME,$0-4
793 MOVW gg+0(FP), R0
794 B setg<>(SB)
795
796TEXT setg<>(SB),NOSPLIT|NOFRAME,$0-0
797 MOVW R0, g
798
799 // Save g to thread-local storage.
800#ifdef GOOS_windows
801 B runtime·save_g(SB)
802#else
803#ifdef GOOS_openbsd
804 B runtime·save_g(SB)
805#else
806 MOVB runtime·iscgo(SB), R0
807 CMP $0, R0
808 B.EQ 2(PC)
809 B runtime·save_g(SB)
810
811 MOVW g, R0
812 RET
813#endif
814#endif
815
816TEXT runtime·emptyfunc(SB),0,$0-0
817 RET
818
819TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
820 MOVW $0, R0
821 MOVW (R0), R1
822
823// armPublicationBarrier is a native store/store barrier for ARMv7+.
824// On earlier ARM revisions, armPublicationBarrier is a no-op.
825// This will not work on SMP ARMv6 machines, if any are in use.
826// To implement publicationBarrier in sys_$GOOS_arm.s using the native
827// instructions, use:
828//
829// TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
830// B runtime·armPublicationBarrier(SB)
831//
832TEXT runtime·armPublicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
833 MOVB runtime·goarm(SB), R11
834 CMP $7, R11
835 BLT 2(PC)
836 DMB MB_ST
837 RET
838
839// AES hashing not implemented for ARM
840TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-16
841 JMP runtime·memhashFallback(SB)
842TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-12
843 JMP runtime·strhashFallback(SB)
844TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-12
845 JMP runtime·memhash32Fallback(SB)
846TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-12
847 JMP runtime·memhash64Fallback(SB)
848
849TEXT runtime·return0(SB),NOSPLIT,$0
850 MOVW $0, R0
851 RET
852
853TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0
854 MOVW cycles+0(FP), R1
855 MOVW $0, R0
856yieldloop:
857 WORD $0xe320f001 // YIELD (NOP pre-ARMv6K)
858 CMP R0, R1
859 B.NE 2(PC)
860 RET
861 SUB $1, R1
862 B yieldloop
863
864// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
865// Must obey the gcc calling convention.
866TEXT _cgo_topofstack(SB),NOSPLIT,$8
867 // R11 and g register are clobbered by load_g. They are
868 // callee-save in the gcc calling convention, so save them here.
869 MOVW R11, saveR11-4(SP)
870 MOVW g, saveG-8(SP)
871
872 BL runtime·load_g(SB)
873 MOVW g_m(g), R0
874 MOVW m_curg(R0), R0
875 MOVW (g_stack+stack_hi)(R0), R0
876
877 MOVW saveG-8(SP), g
878 MOVW saveR11-4(SP), R11
879 RET
880
881// The top-most function running on a goroutine
882// returns to goexit+PCQuantum.
883TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
884 MOVW R0, R0 // NOP
885 BL runtime·goexit1(SB) // does not return
886 // traceback from goexit1 must hit code range of goexit
887 MOVW R0, R0 // NOP
888
889// x -> x/1000000, x%1000000, called from Go with args, results on stack.
890TEXT runtime·usplit(SB),NOSPLIT,$0-12
891 MOVW x+0(FP), R0
892 CALL runtime·usplitR0(SB)
893 MOVW R0, q+4(FP)
894 MOVW R1, r+8(FP)
895 RET
896
897// R0, R1 = R0/1000000, R0%1000000
898TEXT runtime·usplitR0(SB),NOSPLIT,$0
899 // magic multiply to avoid software divide without available m.
900 // see output of go tool compile -S for x/1000000.
901 MOVW R0, R3
902 MOVW $1125899907, R1
903 MULLU R1, R0, (R0, R1)
904 MOVW R0>>18, R0
905 MOVW $1000000, R1
906 MULU R0, R1
907 SUB R1, R3, R1
908 RET
909
910// This is called from .init_array and follows the platform, not Go, ABI.
911TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
912 MOVW R9, saver9-4(SP) // The access to global variables below implicitly uses R9, which is callee-save
913 MOVW R11, saver11-8(SP) // Likewise, R11 is the temp register, but callee-save in C ABI
914 MOVW runtime·lastmoduledatap(SB), R1
915 MOVW R0, moduledata_next(R1)
916 MOVW R0, runtime·lastmoduledatap(SB)
917 MOVW saver11-8(SP), R11
918 MOVW saver9-4(SP), R9
919 RET
920
921TEXT ·checkASM(SB),NOSPLIT,$0-1
922 MOVW $1, R3
923 MOVB R3, ret+0(FP)
924 RET
925
926// gcWriteBarrier informs the GC about heap pointer writes.
927//
928// gcWriteBarrier does NOT follow the Go ABI. It accepts the
929// number of bytes of buffer needed in R8, and returns a pointer
930// to the buffer space in R8.
931// It clobbers condition codes.
932// It does not clobber any other general-purpose registers,
933// but may clobber others (e.g., floating point registers).
934// The act of CALLing gcWriteBarrier will clobber R14 (LR).
935TEXT gcWriteBarrier<>(SB),NOSPLIT|NOFRAME,$0
936 // Save the registers clobbered by the fast path.
937 MOVM.DB.W [R0,R1], (R13)
938retry:
939 MOVW g_m(g), R0
940 MOVW m_p(R0), R0
941 MOVW (p_wbBuf+wbBuf_next)(R0), R1
942 MOVW (p_wbBuf+wbBuf_end)(R0), R11
943 // Increment wbBuf.next position.
944 ADD R8, R1
945 // Is the buffer full?
946 CMP R11, R1
947 BHI flush
948 // Commit to the larger buffer.
949 MOVW R1, (p_wbBuf+wbBuf_next)(R0)
950 // Make return value (the original next position)
951 SUB R8, R1, R8
952 // Restore registers.
953 MOVM.IA.W (R13), [R0,R1]
954 RET
955
956flush:
957 // Save all general purpose registers since these could be
958 // clobbered by wbBufFlush and were not saved by the caller.
959 //
960 // R0 and R1 were saved at entry.
961 // R10 is g, so preserved.
962 // R11 is linker temp, so no need to save.
963 // R13 is stack pointer.
964 // R15 is PC.
965 MOVM.DB.W [R2-R9,R12], (R13)
966 // Save R14 (LR) because the fast path above doesn't save it,
967 // but needs it to RET.
968 MOVM.DB.W [R14], (R13)
969
970 CALL runtime·wbBufFlush(SB)
971
972 MOVM.IA.W (R13), [R14]
973 MOVM.IA.W (R13), [R2-R9,R12]
974 JMP retry
975
976TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
977 MOVW $4, R8
978 JMP gcWriteBarrier<>(SB)
979TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
980 MOVW $8, R8
981 JMP gcWriteBarrier<>(SB)
982TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
983 MOVW $12, R8
984 JMP gcWriteBarrier<>(SB)
985TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
986 MOVW $16, R8
987 JMP gcWriteBarrier<>(SB)
988TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
989 MOVW $20, R8
990 JMP gcWriteBarrier<>(SB)
991TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
992 MOVW $24, R8
993 JMP gcWriteBarrier<>(SB)
994TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
995 MOVW $28, R8
996 JMP gcWriteBarrier<>(SB)
997TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
998 MOVW $32, R8
999 JMP gcWriteBarrier<>(SB)
1000
1001// Note: these functions use a special calling convention to save generated code space.
1002// Arguments are passed in registers, but the space for those arguments are allocated
1003// in the caller's stack frame. These stubs write the args into that stack space and
1004// then tail call to the corresponding runtime handler.
1005// The tail call makes these stubs disappear in backtraces.
1006TEXT runtime·panicIndex(SB),NOSPLIT,$0-8
1007 MOVW R0, x+0(FP)
1008 MOVW R1, y+4(FP)
1009 JMP runtime·goPanicIndex(SB)
1010TEXT runtime·panicIndexU(SB),NOSPLIT,$0-8
1011 MOVW R0, x+0(FP)
1012 MOVW R1, y+4(FP)
1013 JMP runtime·goPanicIndexU(SB)
1014TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-8
1015 MOVW R1, x+0(FP)
1016 MOVW R2, y+4(FP)
1017 JMP runtime·goPanicSliceAlen(SB)
1018TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-8
1019 MOVW R1, x+0(FP)
1020 MOVW R2, y+4(FP)
1021 JMP runtime·goPanicSliceAlenU(SB)
1022TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-8
1023 MOVW R1, x+0(FP)
1024 MOVW R2, y+4(FP)
1025 JMP runtime·goPanicSliceAcap(SB)
1026TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-8
1027 MOVW R1, x+0(FP)
1028 MOVW R2, y+4(FP)
1029 JMP runtime·goPanicSliceAcapU(SB)
1030TEXT runtime·panicSliceB(SB),NOSPLIT,$0-8
1031 MOVW R0, x+0(FP)
1032 MOVW R1, y+4(FP)
1033 JMP runtime·goPanicSliceB(SB)
1034TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-8
1035 MOVW R0, x+0(FP)
1036 MOVW R1, y+4(FP)
1037 JMP runtime·goPanicSliceBU(SB)
1038TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-8
1039 MOVW R2, x+0(FP)
1040 MOVW R3, y+4(FP)
1041 JMP runtime·goPanicSlice3Alen(SB)
1042TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-8
1043 MOVW R2, x+0(FP)
1044 MOVW R3, y+4(FP)
1045 JMP runtime·goPanicSlice3AlenU(SB)
1046TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-8
1047 MOVW R2, x+0(FP)
1048 MOVW R3, y+4(FP)
1049 JMP runtime·goPanicSlice3Acap(SB)
1050TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-8
1051 MOVW R2, x+0(FP)
1052 MOVW R3, y+4(FP)
1053 JMP runtime·goPanicSlice3AcapU(SB)
1054TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-8
1055 MOVW R1, x+0(FP)
1056 MOVW R2, y+4(FP)
1057 JMP runtime·goPanicSlice3B(SB)
1058TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-8
1059 MOVW R1, x+0(FP)
1060 MOVW R2, y+4(FP)
1061 JMP runtime·goPanicSlice3BU(SB)
1062TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-8
1063 MOVW R0, x+0(FP)
1064 MOVW R1, y+4(FP)
1065 JMP runtime·goPanicSlice3C(SB)
1066TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-8
1067 MOVW R0, x+0(FP)
1068 MOVW R1, y+4(FP)
1069 JMP runtime·goPanicSlice3CU(SB)
1070TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-8
1071 MOVW R2, x+0(FP)
1072 MOVW R3, y+4(FP)
1073 JMP runtime·goPanicSliceConvert(SB)
1074
1075// Extended versions for 64-bit indexes.
1076TEXT runtime·panicExtendIndex(SB),NOSPLIT,$0-12
1077 MOVW R4, hi+0(FP)
1078 MOVW R0, lo+4(FP)
1079 MOVW R1, y+8(FP)
1080 JMP runtime·goPanicExtendIndex(SB)
1081TEXT runtime·panicExtendIndexU(SB),NOSPLIT,$0-12
1082 MOVW R4, hi+0(FP)
1083 MOVW R0, lo+4(FP)
1084 MOVW R1, y+8(FP)
1085 JMP runtime·goPanicExtendIndexU(SB)
1086TEXT runtime·panicExtendSliceAlen(SB),NOSPLIT,$0-12
1087 MOVW R4, hi+0(FP)
1088 MOVW R1, lo+4(FP)
1089 MOVW R2, y+8(FP)
1090 JMP runtime·goPanicExtendSliceAlen(SB)
1091TEXT runtime·panicExtendSliceAlenU(SB),NOSPLIT,$0-12
1092 MOVW R4, hi+0(FP)
1093 MOVW R1, lo+4(FP)
1094 MOVW R2, y+8(FP)
1095 JMP runtime·goPanicExtendSliceAlenU(SB)
1096TEXT runtime·panicExtendSliceAcap(SB),NOSPLIT,$0-12
1097 MOVW R4, hi+0(FP)
1098 MOVW R1, lo+4(FP)
1099 MOVW R2, y+8(FP)
1100 JMP runtime·goPanicExtendSliceAcap(SB)
1101TEXT runtime·panicExtendSliceAcapU(SB),NOSPLIT,$0-12
1102 MOVW R4, hi+0(FP)
1103 MOVW R1, lo+4(FP)
1104 MOVW R2, y+8(FP)
1105 JMP runtime·goPanicExtendSliceAcapU(SB)
1106TEXT runtime·panicExtendSliceB(SB),NOSPLIT,$0-12
1107 MOVW R4, hi+0(FP)
1108 MOVW R0, lo+4(FP)
1109 MOVW R1, y+8(FP)
1110 JMP runtime·goPanicExtendSliceB(SB)
1111TEXT runtime·panicExtendSliceBU(SB),NOSPLIT,$0-12
1112 MOVW R4, hi+0(FP)
1113 MOVW R0, lo+4(FP)
1114 MOVW R1, y+8(FP)
1115 JMP runtime·goPanicExtendSliceBU(SB)
1116TEXT runtime·panicExtendSlice3Alen(SB),NOSPLIT,$0-12
1117 MOVW R4, hi+0(FP)
1118 MOVW R2, lo+4(FP)
1119 MOVW R3, y+8(FP)
1120 JMP runtime·goPanicExtendSlice3Alen(SB)
1121TEXT runtime·panicExtendSlice3AlenU(SB),NOSPLIT,$0-12
1122 MOVW R4, hi+0(FP)
1123 MOVW R2, lo+4(FP)
1124 MOVW R3, y+8(FP)
1125 JMP runtime·goPanicExtendSlice3AlenU(SB)
1126TEXT runtime·panicExtendSlice3Acap(SB),NOSPLIT,$0-12
1127 MOVW R4, hi+0(FP)
1128 MOVW R2, lo+4(FP)
1129 MOVW R3, y+8(FP)
1130 JMP runtime·goPanicExtendSlice3Acap(SB)
1131TEXT runtime·panicExtendSlice3AcapU(SB),NOSPLIT,$0-12
1132 MOVW R4, hi+0(FP)
1133 MOVW R2, lo+4(FP)
1134 MOVW R3, y+8(FP)
1135 JMP runtime·goPanicExtendSlice3AcapU(SB)
1136TEXT runtime·panicExtendSlice3B(SB),NOSPLIT,$0-12
1137 MOVW R4, hi+0(FP)
1138 MOVW R1, lo+4(FP)
1139 MOVW R2, y+8(FP)
1140 JMP runtime·goPanicExtendSlice3B(SB)
1141TEXT runtime·panicExtendSlice3BU(SB),NOSPLIT,$0-12
1142 MOVW R4, hi+0(FP)
1143 MOVW R1, lo+4(FP)
1144 MOVW R2, y+8(FP)
1145 JMP runtime·goPanicExtendSlice3BU(SB)
1146TEXT runtime·panicExtendSlice3C(SB),NOSPLIT,$0-12
1147 MOVW R4, hi+0(FP)
1148 MOVW R0, lo+4(FP)
1149 MOVW R1, y+8(FP)
1150 JMP runtime·goPanicExtendSlice3C(SB)
1151TEXT runtime·panicExtendSlice3CU(SB),NOSPLIT,$0-12
1152 MOVW R4, hi+0(FP)
1153 MOVW R0, lo+4(FP)
1154 MOVW R1, y+8(FP)
1155 JMP runtime·goPanicExtendSlice3CU(SB)
View as plain text