Package bits
Package bits implements bit counting and manipulation
functions for the predeclared unsigned integer types.
Functions in this package may be implemented directly by
the compiler, for better performance. For those functions
the code in this package will not be used. Which
functions are implemented by the compiler depends on the
architecture and the Go release.
- Constants
- func Add(x, y, carry uint) (sum, carryOut uint)
- func Add32(x, y, carry uint32) (sum, carryOut uint32)
- func Add64(x, y, carry uint64) (sum, carryOut uint64)
- func Div(hi, lo, y uint) (quo, rem uint)
- func Div32(hi, lo, y uint32) (quo, rem uint32)
- func Div64(hi, lo, y uint64) (quo, rem uint64)
- func LeadingZeros(x uint) int
- func LeadingZeros16(x uint16) int
- func LeadingZeros32(x uint32) int
- func LeadingZeros64(x uint64) int
- func LeadingZeros8(x uint8) int
- func Len(x uint) int
- func Len16(x uint16) (n int)
- func Len32(x uint32) (n int)
- func Len64(x uint64) (n int)
- func Len8(x uint8) int
- func Mul(x, y uint) (hi, lo uint)
- func Mul32(x, y uint32) (hi, lo uint32)
- func Mul64(x, y uint64) (hi, lo uint64)
- func OnesCount(x uint) int
- func OnesCount16(x uint16) int
- func OnesCount32(x uint32) int
- func OnesCount64(x uint64) int
- func OnesCount8(x uint8) int
- func Rem(hi, lo, y uint) uint
- func Rem32(hi, lo, y uint32) uint32
- func Rem64(hi, lo, y uint64) uint64
- func Reverse(x uint) uint
- func Reverse16(x uint16) uint16
- func Reverse32(x uint32) uint32
- func Reverse64(x uint64) uint64
- func Reverse8(x uint8) uint8
- func ReverseBytes(x uint) uint
- func ReverseBytes16(x uint16) uint16
- func ReverseBytes32(x uint32) uint32
- func ReverseBytes64(x uint64) uint64
- func RotateLeft(x uint, k int) uint
- func RotateLeft16(x uint16, k int) uint16
- func RotateLeft32(x uint32, k int) uint32
- func RotateLeft64(x uint64, k int) uint64
- func RotateLeft8(x uint8, k int) uint8
- func Sub(x, y, borrow uint) (diff, borrowOut uint)
- func Sub32(x, y, borrow uint32) (diff, borrowOut uint32)
- func Sub64(x, y, borrow uint64) (diff, borrowOut uint64)
- func TrailingZeros(x uint) int
- func TrailingZeros16(x uint16) int
- func TrailingZeros32(x uint32) int
- func TrailingZeros64(x uint64) int
- func TrailingZeros8(x uint8) int
Package files
bits.go
bits_errors.go
bits_tables.go
Constants
UintSize is the size of a uint in bits.
const UintSize = uintSize
func Add
¶
1.12
func Add(x, y, carry uint) (sum, carryOut uint)
Add returns the sum with carry of x, y and carry: sum = x + y + carry.
The carry input must be 0 or 1; otherwise the behavior is undefined.
The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
func Add32(x, y, carry uint32) (sum, carryOut uint32)
Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
The carry input must be 0 or 1; otherwise the behavior is undefined.
The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint32{33, 12}
n2 := []uint32{21, 23}
d1, carry := bits.Add32(n1[1], n2[1], 0)
d0, _ := bits.Add32(n1[0], n2[0], carry)
nsum := []uint32{d0, d1}
fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
n1 = []uint32{1, 0x80000000}
n2 = []uint32{1, 0x80000000}
d1, carry = bits.Add32(n1[1], n2[1], 0)
d0, _ = bits.Add32(n1[0], n2[0], carry)
nsum = []uint32{d0, d1}
fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
Output:
[33 12] + [21 23] = [54 35] (carry bit was 0)
[1 2147483648] + [1 2147483648] = [3 0] (carry bit was 1)
func Add64(x, y, carry uint64) (sum, carryOut uint64)
Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
The carry input must be 0 or 1; otherwise the behavior is undefined.
The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint64{33, 12}
n2 := []uint64{21, 23}
d1, carry := bits.Add64(n1[1], n2[1], 0)
d0, _ := bits.Add64(n1[0], n2[0], carry)
nsum := []uint64{d0, d1}
fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
n1 = []uint64{1, 0x8000000000000000}
n2 = []uint64{1, 0x8000000000000000}
d1, carry = bits.Add64(n1[1], n2[1], 0)
d0, _ = bits.Add64(n1[0], n2[0], carry)
nsum = []uint64{d0, d1}
fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
Output:
[33 12] + [21 23] = [54 35] (carry bit was 0)
[1 9223372036854775808] + [1 9223372036854775808] = [3 0] (carry bit was 1)
func Div
¶
1.12
func Div(hi, lo, y uint) (quo, rem uint)
Div returns the quotient and remainder of (hi, lo) divided by y:
quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
half in parameter hi and the lower half in parameter lo.
Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func Div32(hi, lo, y uint32) (quo, rem uint32)
Div32 returns the quotient and remainder of (hi, lo) divided by y:
quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
half in parameter hi and the lower half in parameter lo.
Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
▾ Example
Code:
n1 := []uint32{0, 6}
n2 := []uint32{0, 3}
quo, rem := bits.Div32(n1[0], n1[1], n2[1])
nsum := []uint32{quo, rem}
fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)
n1 = []uint32{2, 0x80000000}
n2 = []uint32{0, 0x80000000}
quo, rem = bits.Div32(n1[0], n1[1], n2[1])
nsum = []uint32{quo, rem}
fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)
Output:
[0 6] / 3 = [2 0]
[2 2147483648] / 2147483648 = [5 0]
func Div64(hi, lo, y uint64) (quo, rem uint64)
Div64 returns the quotient and remainder of (hi, lo) divided by y:
quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
half in parameter hi and the lower half in parameter lo.
Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
▾ Example
Code:
n1 := []uint64{0, 6}
n2 := []uint64{0, 3}
quo, rem := bits.Div64(n1[0], n1[1], n2[1])
nsum := []uint64{quo, rem}
fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)
n1 = []uint64{2, 0x8000000000000000}
n2 = []uint64{0, 0x8000000000000000}
quo, rem = bits.Div64(n1[0], n1[1], n2[1])
nsum = []uint64{quo, rem}
fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)
Output:
[0 6] / 3 = [2 0]
[2 9223372036854775808] / 9223372036854775808 = [5 0]
func LeadingZeros(x uint) int
LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
func LeadingZeros16(x uint16) int
LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
▾ Example
Code:
fmt.Printf("LeadingZeros16(%016b) = %d\n", 1, bits.LeadingZeros16(1))
Output:
LeadingZeros16(0000000000000001) = 15
func LeadingZeros32(x uint32) int
LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
▾ Example
Code:
fmt.Printf("LeadingZeros32(%032b) = %d\n", 1, bits.LeadingZeros32(1))
Output:
LeadingZeros32(00000000000000000000000000000001) = 31
func LeadingZeros64(x uint64) int
LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
▾ Example
Code:
fmt.Printf("LeadingZeros64(%064b) = %d\n", 1, bits.LeadingZeros64(1))
Output:
LeadingZeros64(0000000000000000000000000000000000000000000000000000000000000001) = 63
func LeadingZeros8(x uint8) int
LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
▾ Example
Code:
fmt.Printf("LeadingZeros8(%08b) = %d\n", 1, bits.LeadingZeros8(1))
Output:
LeadingZeros8(00000001) = 7
func Len
¶
1.9
func Len(x uint) int
Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len16(x uint16) (n int)
Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
▾ Example
Code:
fmt.Printf("Len16(%016b) = %d\n", 8, bits.Len16(8))
Output:
Len16(0000000000001000) = 4
func Len32(x uint32) (n int)
Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
▾ Example
Code:
fmt.Printf("Len32(%032b) = %d\n", 8, bits.Len32(8))
Output:
Len32(00000000000000000000000000001000) = 4
func Len64(x uint64) (n int)
Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
▾ Example
Code:
fmt.Printf("Len64(%064b) = %d\n", 8, bits.Len64(8))
Output:
Len64(0000000000000000000000000000000000000000000000000000000000001000) = 4
func Len8(x uint8) int
Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
▾ Example
Code:
fmt.Printf("Len8(%08b) = %d\n", 8, bits.Len8(8))
Output:
Len8(00001000) = 4
func Mul
¶
1.12
func Mul(x, y uint) (hi, lo uint)
Mul returns the full-width product of x and y: (hi, lo) = x * y
with the product bits' upper half returned in hi and the lower
half returned in lo.
This function's execution time does not depend on the inputs.
func Mul32(x, y uint32) (hi, lo uint32)
Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
with the product bits' upper half returned in hi and the lower
half returned in lo.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint32{0, 12}
n2 := []uint32{0, 12}
hi, lo := bits.Mul32(n1[1], n2[1])
nsum := []uint32{hi, lo}
fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)
n1 = []uint32{0, 0x80000000}
n2 = []uint32{0, 2}
hi, lo = bits.Mul32(n1[1], n2[1])
nsum = []uint32{hi, lo}
fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)
Output:
12 * 12 = [0 144]
2147483648 * 2 = [1 0]
func Mul64(x, y uint64) (hi, lo uint64)
Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
with the product bits' upper half returned in hi and the lower
half returned in lo.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint64{0, 12}
n2 := []uint64{0, 12}
hi, lo := bits.Mul64(n1[1], n2[1])
nsum := []uint64{hi, lo}
fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)
n1 = []uint64{0, 0x8000000000000000}
n2 = []uint64{0, 2}
hi, lo = bits.Mul64(n1[1], n2[1])
nsum = []uint64{hi, lo}
fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)
Output:
12 * 12 = [0 144]
9223372036854775808 * 2 = [1 0]
func OnesCount(x uint) int
OnesCount returns the number of one bits ("population count") in x.
▾ Example
Code:
fmt.Printf("OnesCount(%b) = %d\n", 14, bits.OnesCount(14))
Output:
OnesCount(1110) = 3
func OnesCount16(x uint16) int
OnesCount16 returns the number of one bits ("population count") in x.
▾ Example
Code:
fmt.Printf("OnesCount16(%016b) = %d\n", 14, bits.OnesCount16(14))
Output:
OnesCount16(0000000000001110) = 3
func OnesCount32(x uint32) int
OnesCount32 returns the number of one bits ("population count") in x.
▾ Example
Code:
fmt.Printf("OnesCount32(%032b) = %d\n", 14, bits.OnesCount32(14))
Output:
OnesCount32(00000000000000000000000000001110) = 3
func OnesCount64(x uint64) int
OnesCount64 returns the number of one bits ("population count") in x.
▾ Example
Code:
fmt.Printf("OnesCount64(%064b) = %d\n", 14, bits.OnesCount64(14))
Output:
OnesCount64(0000000000000000000000000000000000000000000000000000000000001110) = 3
func OnesCount8(x uint8) int
OnesCount8 returns the number of one bits ("population count") in x.
▾ Example
Code:
fmt.Printf("OnesCount8(%08b) = %d\n", 14, bits.OnesCount8(14))
Output:
OnesCount8(00001110) = 3
func Rem
¶
1.14
func Rem(hi, lo, y uint) uint
Rem returns the remainder of (hi, lo) divided by y. Rem panics for
y == 0 (division by zero) but, unlike Div, it doesn't panic on a
quotient overflow.
func Rem32(hi, lo, y uint32) uint32
Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
for y == 0 (division by zero) but, unlike Div32, it doesn't panic
on a quotient overflow.
func Rem64(hi, lo, y uint64) uint64
Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
for y == 0 (division by zero) but, unlike Div64, it doesn't panic
on a quotient overflow.
func Reverse(x uint) uint
Reverse returns the value of x with its bits in reversed order.
func Reverse16(x uint16) uint16
Reverse16 returns the value of x with its bits in reversed order.
▾ Example
Code:
fmt.Printf("%016b\n", 19)
fmt.Printf("%016b\n", bits.Reverse16(19))
Output:
0000000000010011
1100100000000000
func Reverse32(x uint32) uint32
Reverse32 returns the value of x with its bits in reversed order.
▾ Example
Code:
fmt.Printf("%032b\n", 19)
fmt.Printf("%032b\n", bits.Reverse32(19))
Output:
00000000000000000000000000010011
11001000000000000000000000000000
func Reverse64(x uint64) uint64
Reverse64 returns the value of x with its bits in reversed order.
▾ Example
Code:
fmt.Printf("%064b\n", 19)
fmt.Printf("%064b\n", bits.Reverse64(19))
Output:
0000000000000000000000000000000000000000000000000000000000010011
1100100000000000000000000000000000000000000000000000000000000000
func Reverse8(x uint8) uint8
Reverse8 returns the value of x with its bits in reversed order.
▾ Example
Code:
fmt.Printf("%08b\n", 19)
fmt.Printf("%08b\n", bits.Reverse8(19))
Output:
00010011
11001000
func ReverseBytes(x uint) uint
ReverseBytes returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
func ReverseBytes16(x uint16) uint16
ReverseBytes16 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%016b\n", 15)
fmt.Printf("%016b\n", bits.ReverseBytes16(15))
Output:
0000000000001111
0000111100000000
func ReverseBytes32(x uint32) uint32
ReverseBytes32 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%032b\n", 15)
fmt.Printf("%032b\n", bits.ReverseBytes32(15))
Output:
00000000000000000000000000001111
00001111000000000000000000000000
func ReverseBytes64(x uint64) uint64
ReverseBytes64 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%064b\n", 15)
fmt.Printf("%064b\n", bits.ReverseBytes64(15))
Output:
0000000000000000000000000000000000000000000000000000000000001111
0000111100000000000000000000000000000000000000000000000000000000
func RotateLeft(x uint, k int) uint
RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
To rotate x right by k bits, call RotateLeft(x, -k).
This function's execution time does not depend on the inputs.
func RotateLeft16(x uint16, k int) uint16
RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
To rotate x right by k bits, call RotateLeft16(x, -k).
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%016b\n", 15)
fmt.Printf("%016b\n", bits.RotateLeft16(15, 2))
fmt.Printf("%016b\n", bits.RotateLeft16(15, -2))
Output:
0000000000001111
0000000000111100
1100000000000011
func RotateLeft32(x uint32, k int) uint32
RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
To rotate x right by k bits, call RotateLeft32(x, -k).
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%032b\n", 15)
fmt.Printf("%032b\n", bits.RotateLeft32(15, 2))
fmt.Printf("%032b\n", bits.RotateLeft32(15, -2))
Output:
00000000000000000000000000001111
00000000000000000000000000111100
11000000000000000000000000000011
func RotateLeft64(x uint64, k int) uint64
RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
To rotate x right by k bits, call RotateLeft64(x, -k).
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%064b\n", 15)
fmt.Printf("%064b\n", bits.RotateLeft64(15, 2))
fmt.Printf("%064b\n", bits.RotateLeft64(15, -2))
Output:
0000000000000000000000000000000000000000000000000000000000001111
0000000000000000000000000000000000000000000000000000000000111100
1100000000000000000000000000000000000000000000000000000000000011
func RotateLeft8(x uint8, k int) uint8
RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
To rotate x right by k bits, call RotateLeft8(x, -k).
This function's execution time does not depend on the inputs.
▾ Example
Code:
fmt.Printf("%08b\n", 15)
fmt.Printf("%08b\n", bits.RotateLeft8(15, 2))
fmt.Printf("%08b\n", bits.RotateLeft8(15, -2))
Output:
00001111
00111100
11000011
func Sub
¶
1.12
func Sub(x, y, borrow uint) (diff, borrowOut uint)
Sub returns the difference of x, y and borrow: diff = x - y - borrow.
The borrow input must be 0 or 1; otherwise the behavior is undefined.
The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
func Sub32(x, y, borrow uint32) (diff, borrowOut uint32)
Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
The borrow input must be 0 or 1; otherwise the behavior is undefined.
The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint32{33, 23}
n2 := []uint32{21, 12}
d1, carry := bits.Sub32(n1[1], n2[1], 0)
d0, _ := bits.Sub32(n1[0], n2[0], carry)
nsum := []uint32{d0, d1}
fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
n1 = []uint32{3, 0x7fffffff}
n2 = []uint32{1, 0x80000000}
d1, carry = bits.Sub32(n1[1], n2[1], 0)
d0, _ = bits.Sub32(n1[0], n2[0], carry)
nsum = []uint32{d0, d1}
fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
Output:
[33 23] - [21 12] = [12 11] (carry bit was 0)
[3 2147483647] - [1 2147483648] = [1 4294967295] (carry bit was 1)
func Sub64(x, y, borrow uint64) (diff, borrowOut uint64)
Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
The borrow input must be 0 or 1; otherwise the behavior is undefined.
The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
▾ Example
Code:
n1 := []uint64{33, 23}
n2 := []uint64{21, 12}
d1, carry := bits.Sub64(n1[1], n2[1], 0)
d0, _ := bits.Sub64(n1[0], n2[0], carry)
nsum := []uint64{d0, d1}
fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
n1 = []uint64{3, 0x7fffffffffffffff}
n2 = []uint64{1, 0x8000000000000000}
d1, carry = bits.Sub64(n1[1], n2[1], 0)
d0, _ = bits.Sub64(n1[0], n2[0], carry)
nsum = []uint64{d0, d1}
fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)
Output:
[33 23] - [21 12] = [12 11] (carry bit was 0)
[3 9223372036854775807] - [1 9223372036854775808] = [1 18446744073709551615] (carry bit was 1)
func TrailingZeros(x uint) int
TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
func TrailingZeros16(x uint16) int
TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
▾ Example
Code:
fmt.Printf("TrailingZeros16(%016b) = %d\n", 14, bits.TrailingZeros16(14))
Output:
TrailingZeros16(0000000000001110) = 1
func TrailingZeros32(x uint32) int
TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
▾ Example
Code:
fmt.Printf("TrailingZeros32(%032b) = %d\n", 14, bits.TrailingZeros32(14))
Output:
TrailingZeros32(00000000000000000000000000001110) = 1
func TrailingZeros64(x uint64) int
TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
▾ Example
Code:
fmt.Printf("TrailingZeros64(%064b) = %d\n", 14, bits.TrailingZeros64(14))
Output:
TrailingZeros64(0000000000000000000000000000000000000000000000000000000000001110) = 1
func TrailingZeros8(x uint8) int
TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
▾ Example
Code:
fmt.Printf("TrailingZeros8(%08b) = %d\n", 14, bits.TrailingZeros8(14))
Output:
TrailingZeros8(00001110) = 1